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Introduction 
We start our presentation with a defense of abstract mathematics, highlighting the 
arguments provided in Journey Through Genius, and then broadening the inquiry by 
examining the contributions of G.H. Hardy's A Mathematician's Apology to this area. 
 
We then provide some biographical information on Georg Cantor. He is credited with the 
creation of set theory, and the origination of the diagonalization proof of the non-
denumerability of the real numbers, which is the Great Theorem of this section. 
 
We describe the notions of infinity up to the 19th century and the central advancement 
that led to this finding: the use of bijections to establish cardinality of sets, both infinite 
and finite.  We demonstrate this technique by evidencing bijection between the naturals 
and the integers and the naturals and the rationals, and a few additional miscellaneous 
examples. 
 
We then present Cantor's diagonalization proof of the non-denumerability of the real 
numbers by showing that there is no bijection between the natural numbers and the real 
numbers in the open interval (0,1).  We also evidence a bijection from the open interval 
(0,1) to the full real line, and thus demonstrate that the real numbers are not denumerable.  
We follow this with a discussion of the cardinality of the power set of the natural 
numbers.  In particular, we lightly modify Cantor's proof to show that that the power set 
of the natural numbers is not denumerable. 
 
We introduce the Cantor set, a delightful set that has uncountable members, but still 
manages to be of measure zero, and discuss a sly way of establishing its non-
denumerability. 
 
Finally, we make some parting comments pertaining to other legacies of Cantor, 
including the Axiom of Choice, and its equivalent statements, the Well Ordering 
Principal and Zorn's Lemma. 
 
We close with a discussion on the beauty and durability of Cantor's proof of the non-
denumerability of the real numbers. 
 
On the Aesthetics of Mathematics 
The 19th century was a time of increasing abstraction and generality in mathematics, 
which increased the breadth and depth of research in mathematics.  This expansion was at 
least in part due to abandoning the previously held convention: that any mathematical 
problem needed to be (at least tangentially) tied to a physics or engineering problem.  
Mathematics had been a separate discipline, but it was one grounded in the observable. 
 
Similarly, throughout this same time period, another set of human endeavors strayed 
toward the abstract: art.  During the 19th century, there was a transition from the 



Neoclassical's highly detailed renderings of realistic scenes to the Impressionistic 
emphasis on the movement of light in a scene that is abstractly (and quickly) rendered. 
 
In both areas, detractors belittled the first halting steps toward independence.  In art, the 
transition from art as strict depiction of a scene to a medium that conveyed the abstract 
was ultimately a supremely fruitful one.  The subject fundamentally shifted from the 
particulars of the scene to the light, the color, or the feeling instilled by the scene. 
 
Similarly, during the 19th century, there were entire branches of mathematics that were 
developed that didn't have any obvious tie to an existing problem.  Alternative geometries 
were developed that included differing notions of the meaning of the term "parallel": 
 
Euclid's 5th Postulate: 

“That, if a straight line falling on two straight lines makes the interior angles on 
the same side less than two right angles, the two straight lines, if produced 
indefinitely, meet on that side on which are the angles less than the two right 
angles.” 

 
The parallel postulate of hyperbolic geometry: 

“For any infinite straight line L and any point P not on it, there are many other 
infinitely extending straight lines that pass through P and which do not intersect 
L." 

 
And the parallel postulate of elliptic geometry: 

"Through any point in the plane, there exist no lines parallel  to a given line." 
 
These are mutually exclusive, and yet a large number of people devoted time to all of 
them.  If one were to establish that the universe was actually one of these geometries, 
would the study of the alternate geometries be wasted? 
 
The answer to that question is largely determined by what one views as the fundamental 
motivation for the study of mathematics.  If one believed that the point was to make 
useful tools for other disciplines, then the answer would likely be "yes".  If one was of 
the belief that the mathematics was an interesting and productive endeavor, irrespective 
of its utility in solving physics and engineering problems, then the answer would be "no". 
 
Of course, there is an alternate possibility: perhaps mathematicians could dive into this 
sea of abstraction, under the assumption that eventually this abstraction would pay off by 
providing new methods to approach problems in physics and engineering.  There are 
certainly a large number of instances where this occurred. In cosmology, one theory 
predicts that the universe globally complies with hyperbolic geometry; and that it is only 
the limitations of our perceptions that trick us into thinking the we live in a Euclidian 
world.  Modern particle physics is accomplished using Lie Algebras.  Perhaps much of 
today's "abstract mathematics" is tomorrow's "applied mathematics". 
 



But is this relevant to our discussion?  Do we demand that our Impressionistic paintings 
possess some utility outside of their aesthetic appeal?  Are we plotting for future 
applications of Jackson Pollock's work? (Perhaps Pollock's techniques will find use in 
creating depictions of the results of an exploding paint truck, for instance!)  This is 
absurd, of course.  Art is treasured for its message, for its personal impact, for its 
aesthetic value.  We don't expect to be able to club prey to death with the framed art, and 
similarly we should not base our assessment of the worth of a branch of mathematics by 
its projected possible uses! 
 
The change in emphasis of mathematics resulted in abstraction, but not for its own sake.  
To quote G.H. Hardy (one of the most prominent mathematicians of the early 20th 
century), "It is not mere ‘piling of subtlety of generalization upon subtlety of 
generalization’ which is the outstanding achievement of modern mathematics."  The 
ability to wander away from the well traveled paths led to the discovery of 
interconnections where none had been previously imagined. 
 
In fact, Hardy had quite a lot to say on the aesthetic impact of mathematics; he wrote a 
thoroughly readable and poignant book on this particular topic.  His argument is as 
follows: 
 Mathematics is “harmless”. 
Hardy argues that non-elementary mathematics, by its very abstract nature, is unlikely to 
be used for any direct mischief.  This appealed to Hardy, who had at this point of his life 
had witnessed the destruction of World War I, and the genesis of World War II.  He was 
happy to report that advanced mathematics did not find much utility in death dealing.  
(Along this line, it is also amusing to note that Paul R. Halmos's description of his 
dealings with the US army during this period seems to confirm that the day-to-day 
military machinations do not much cross paths with advanced mathematics; see chapter 7 
of I Want to be a Mathematician: An Automathography for details.) 
 
 Mathematics is “eternal”. 
Portions of mathematics have lasted for thousands of years, and little else has.  Further, 
the originators of much of this mathematics are still known to us by name.  We still say 
"The Pythagorean Theorem" and "Euclid's Lemma", and still tell of Pythagoras drowning 
the mathematician (thought to be Hippasus) who proved that 2  is irrational.  What's 
more, even in cases where the actual originator is unknown, we still have the 
mathematics created. 
 
 Mathematics helps to show the bounds of what humanity can accomplish. 
Just as with mountain climbing, baseball, cricket, track and field, and blindfolded chess, 
doing mathematics helps to demonstrate the bounds of what can be accomplished by 
human-kind.  In track and field, why is it relevant if an athlete can shave off a few 
milliseconds from a hundred yard dash?  Nobody imagines that this accomplishment has 
direct utility in our day to day lives, but it does give us some sense for how fast humans 
can run, and that's something that all humans can be proud of.  I couldn't run that quickly, 
but someone who isn't that distantly related to me can, and so I have some connection to 
that accomplishment.  Similarly, I may not be able to think as deeply as Grigori 



Perelman, but I can appreciate (at least some of) the complexities of the Poincaré 
Conjecture. 
 
 And if mathematics is without true merit... 
Even if the study of abstract mathematics is ultimately seen to be without merit, its study 
isn't that wasteful.  It may be a different matter entirely if the study of mathematics was a 
significant drain on the world economy, but it occurs at such a small scale that there 
simply isn't much to be lost.  Though it is true that there are more mathematicians active 
today than have ever lived, the percentage of the world's population dedicated to research 
into mathematics is simply too small to be significant. 
 
 Mathematics is beautiful. 
This final point is of vital importance.  It is this point which establishes mathematics as 
an aesthetic discipline.  Just as with art that is hung in a museum, not everyone will see 
its beauty, but that doesn't imply that it isn't beautiful, simply not widely appreciated.  
Paul Erdös said it well: "Why are numbers beautiful? It's like asking why is Beethoven's 
Ninth Symphony beautiful. If you don't see why, someone can't tell you. I know numbers 
are beautiful. If they aren't beautiful, nothing is." 
 
Hardy phrased it as such: "A mathematician, like a painter or a poet, is a maker of 
patterns… The mathematician’s patterns, like the painter’s or the poet’s must be 
beautiful; the ideas like the colours or the words, must fit together in a harmonious way. 
Beauty is the first test: there is no permanent place in the world for ugly mathematics." 
 
 
Notions of Infinity to the 19th Century 
The results that we deal with principally deal with the nature of infinity.  Up to this time, 
the notion of infinity had undergone some development, but was still poorly understood.  
From Ancient Greek times, it was clear that the notion of infinity was viewed with some 
skepticism.  Zeno's paradoxes (ca. 450 BC)  can be viewed as a protracted argument 
against the logical consistency of infinity. 
 
This notion had advanced somewhat by the time of Antiphon the Sophist (ca. 410 BC), 
who developed a notion of finding the areas of shapes through the method of exhaustion, 
a style of limiting argument where the area of an object was obtained by summing 
inscribed regular polygons, and finally deriving the area through a proof by contradiction.  
Archimedes (ca. 250) again used a related method to estimate the area and circumference 
of a circle. 
 
In their development of calculus, both Newton and Leibniz brushed up against infinity, 
but neither really attempted to formalize it.  Newton's notion of ratios whose numerator 
and denominator both approach 0 but didn't quite every reach 0 shouts limits to us today, 
but was viewed as strongly connected to the infinite at the time.  Leibniz's notion of 
undividable infinitesimals is still taught today when attempting to convey the notion of 
integration, and was even formalized by Robinson's Nonstandard Analysis in the 1960s. 
 



Finally, both Gauss and Cauchy ultimately viewed infinity as a symbol rather than a 
distinct number; an indication that a function of a sequence grows to be unbounded. 
 
Cantor solidified aspects of infinity, and ultimately demonstrated that there are many 
styles of infinity. 
 
Biography 
Georg Ferdinand Ludwig Philipp Cantor was born in 1845 in Copenhagen, Denmark.  
Eldest of six children, Georg was raised to be a devout Lutheran. 
 
In 1856, when his father became ill, the family moved to Wiesbaden and later Frankfurt, 
seeking milder winters.  In 1860, Cantor graduated with distinction from the Realschule 
in Darmstadt, where his exceptional skills at mathematics were noted.  His father wanted 
Georg to study engineering, and initially he did, but eventually he convinced his father 
that he should be allowed to study mathematics.  So in 1862, following his father’s 
permission, Cantor entered the Federal Polytechnic Institute in Zurich and began studying 
mathematics. 
 
After his father’s death in 1863, Cantor shifted his studies to the University of Berlin, 
studying under Weierstrass, Kummer, and Kronecker, and befriended fellow student 
Hermann Schwarz.  In 1867, Berlin granted him the Ph.D. for a thesis on number theory.   
 
After teaching for a year in a Berlin girl’s school, Cantor took up position at the 
University of Halle, where he spent his entire career. 
 
Cantor married in 1874, having six children by 1886.  Thanks to an inheritance from his 
father, Cantor was able to support the family despite his modest academic pay. 
 
Cantor was promoted to Extraordinary Professor in 1872 (and thus started drawing a 
salary), and made full professor by the age of 34, a notable achievement.  But what 
Cantor wanted was a chair at a more prestigious university, in particular at Berlin, then 
the leading German university.  However, Kronecker, who headed mathematics at Berlin, 
and Cantor’s old friend Hermann Schwarz, who now worked at Berlin, were not 
interested in having him as a colleague. 
 
Worse still, Kronecker fundamentally disagreed with the thrust of Cantor’s work.  
Kronecker is now seen as one of the founders of the Constructivist movement in 
mathematics, a view that it is necessary to construct a mathematical object in order to 
prove that it exists.  Cantor came to believe that, due to Kronecker’s stance and influence, 
that he would never leave Halle. 
 
In 1881, a chair at Halle opened, and they accepted Cantor’s suggestion that it be offered 
to Dedekind, Heinrich Weber, and Franz Mertens, in that order, but each declined the 
chair after being offered it, highlighting Halle’s lack of standing among German 
mathematics departments. 
 



In 1884, Cantor suffered his first bout of depression.  The emotional crisis this created 
lead Cantor to explore other areas of study, most notably philosophy and literature. It was 
during this period that he first started to explore his theory that the works attributed to 
William Shakespeare were actually written by Francis Bacon.  During this time he wrote 
fifty-two letters to Mittang-Leffler, all of which attacked Kronecker. 
 
He eventually recovered, but never regained the high level of his earlier work.  He 
eventually sought reconciliation with Kronecker, who graciously accepted, and was 
surprised that there was any rancor between them.  Nevertheless, Kronecker’s objections 
to Cantor’s work persisted. 
 
It was once thought that Cantor’s recurring bouts of depression were caused by this 
opposition to his work.  While it’s likely that Cantor’s mathematical worries and his 
difficulties dealing with certain people were magnified by his depression, it is doubtful 
whether they were its cause; Cantor is currently thought to have be afflicted with bipolar 
disorder. 
 
After his youngest son's death in 1899, Cantor suffered from chronic depression for the 
rest of his life, for which he was excused from teaching and repeatedly confined in 
various sanatoria.  He did not give up on mathematics completely, lecturing on the 
paradoxes of set theory at a meeting of the German mathematical society. 
 
Cantor retired in 1913, and died in 1918, having spent the last year of his life in a 
sanatorium begging his wife to be released. 
 
Cantor’s Work 
Cantor’s first ten papers were on number theory; after that his work turned to analysis at 
the suggestion of Hiene, one of his colleagues at Halle.  His first great work was solving 
the open problem that had eluded Hiene, the existence and uniqueness of a representation 
of a function by trigonometric series.  Between 1870 and 1872, Cantor did more work 
with trigonometric series, including defining irrational numbers as a convergent sequence 
of rational numbers.  Dedekind would later cite Cantor in his work defining the real 
numbers with his celebrated “Dedekind cuts”. 
 
Cantor is credited with the creation of set theory during this time.  His creation of sets, 
and examining the number of elements in these sets arose naturally enough from his 
research into trigonometric series.  Cantor had discovered that the number of 
discontinuities of the function being represented as a trigonometric series determined 
whether this series converges, and was unique.  Cantor formed sets of these points of 
discontinuity, and examined the set's size. 
 
Cantor envisioned sets as arbitrary collections of items, and his framework allowed any 
arbitrary group of items to be included, even if the description yielded inconsistencies.  In 
just a few years, Bertrand Russell's paradox would suggest that this allowance was overly 
broad: that it would allow for the creation of logically inconsistent sets.  In response, this 
notion of set theory would go on to be refined: Zermelo-Frankel set theory would 



disallow making sets purely through arbitrary description, explicitly disallowing sets like 
"the set of all sets".  von Neumann-Bernays-Gödel set theory refers to such collections as 
"classes" and more manageable sub-portions "sets". 
 
The fundamental problem is that frameworks that are too broad allow for inconsistent 
statements to be made, a phenomenon that should be familiar to English speakers 
everywhere.  This same property of English allows for the formation of meaningless, but 
syntactically valid sentences like "Is the designated hitter rule more or less green than the 
fatness of a pig?"  (A suggested answer to this question is "The Treaty of Paris"). 
 
Cantor's contribution wasn't just "throwing stuff into sets".  More significantly, he 
developed a method for finding (cardinality) equivalence between two sets.  He proposed 
the use of the bijection, that is, a function which is both onto (surjective) and one-to-one 
(injective). 
 
This is clearly reasonable in the setting of finite sets, but it is also vacuous in this setting 
(where counting works just as well).  The use of this characterization, however, becomes 
extraordinarily important in dealing with sets that are not finite. 
 
On the Cardinality of Infinite Sets 
Some easy, but conceptually odd, examples first.  A bijection between the odd integers 
and the even integers isn't surprising, as it's clear that the two sets ought to be 
comparable.  For the purpose of example, one such bijection is this: 

{ } { }
1 1

: 2 : 2 1:
onto

n n n nφ
−

∈ + ∈→  given by ( ) 1k kφ → + .  We just associate each even 

number with the odd number to its right. 
 
We shall initially be interested in sets that can be put into a bijective correspondence with 
the set of natural numbers (that is, the positive integers).  Recalling our proof of the 
infinitude of primes, we can evidence a fairly counter-intuitive bijection: 

{ }
1 1

: : ,  p is prime
onto

p pφ
−

∈→ .  This seems quite odd, as the "number" of primes 

appears to be much less than the number of other integers.  Other measures of the density 
of primes suggest that our intuition is incorrect.  Note, for example, that the series 

 prime

1
pp

∑  diverges, which suggests that the primes are fairly dense!  An uninteresting 

bijection from the natural numbers to the primes is as follows: ( ) nn pφ = , where np  is 
simply the nth prime. 
 
Any set that can be put into a bijective relationship with the natural numbers is called 
"countably infinite" or "denumerable".  The cardinality of the natural numbers is written 
ℵ0.  Further investigation of these sets is aided by two simple lemmas: 
 



Lemma 1: The cardinality of the (disjoint) union of a countably infinite set and a finite 
set is countably infinite. 
Proof: Let us call our countably infinite set A and our finite set B.  By hypothesis, B has 
a finite number of members, which we'll call 1b , 2b , ..., mb .  We'll define the bijection 

1 1

:
onto

A Bφ
−

∪→  as ( ) n

n m

b n m
n

a n m
φ

−

≤⎧
= ⎨ >⎩

 

(that is, we'll enumerate the finite set with the first m terms, and then enumerate the 
countably infinite set.). 
 
Lemma 2: The cardinality of the (disjoint) union of two countably infinite sets is 
countably infinite. 

Proof: Let us call our sets A and B.  We'll define the map 
1 1

:
onto

A Bφ
−

∪→  

( ) 2

1
2

n is even

n is odd

n

n

a
n

b
φ

+

⎧
⎪= ⎨
⎪
⎩

, which is also a bijection. 

 
Corollary 1: The integers are countable. 
Proof: The set of positive integers is countable (the bijection is the identity), as is the set 
of negative integers (the bijection is negative one multiplied by the identity).  We are left 
with the set containing only 0, a finite set.  So, we have the disjoint union of two 
countably infinite sets (which is countably infinite by lemma 2), and a finite set, yielding 
a countably infinite set. 
 
Theorem: The rational numbers are countably infinite.  We'll define a way of 
enumerating the positive rational numbers.  We'll setup a table where the numerator 
increases as we move right in the table, and the denominator increases as we move down.   

1 2 3 ...
1 1 1
1 2 3 ...
2 2 2
1 2 3 ...
3 3 3

...

 

 
We need to exclude the numbers that we have previously included in order to obtain the 
injective property.  We clearly will have enumerated all of ( ),a b ∈ ×  possibilities, 
and we have excluded equivalent rational numbers by formation of the map. 
 
Thus, we have a bijection :φ +→ .  We can similarly make a bijection from 

:φ− −→  by just multiplying each entry in the table by negative 1.  Thus, both +  



and −  are countable, and we have only excluded 0.  As with the integers, we can take 
the union of all three of these sets, and we are left with a countable set. 
 
A similar argument can be made regarding the algebraic numbers (that is, the numbers 
which are roots of polynomials with integer coefficients) by noting that each polynomial 
has only finite roots, and then by arranging the polynomial into towers in a similar way.  
Thus the algebraic numbers are also countable. 
 
The Great Theorem 
Theorem: The open interval ( )0,1 is not denumerable. 
 
Proof: 
We'll assume the contrary, that is, we assume that there is a bijection between the open 
interval ( )0,1 and the natural numbers. 
 
As this set is assumed to be countable, it can be enumerated.  We'll enumerate this set as 
a sequence of infinite decimals (we'll demand that all decimals that could terminate, do 
terminate, with a tail of of 0s), and we'll arrange these in a tabular form. 
 
We'll produce a number, b, that could not possibly be in this list by moving down the 
principal diagonal of this list, each time choosing a number different than the current 
place that is different than 0 or 9.  (we exclude 0 and 9 to prevent any ambiguity that 
results from repeating decimal values). 
 
0 . 1 0 2 1 1 ...
0 . 0 0 2 0 1 ...
0 . 1 2 3 4 5 ...
0 . 3 2 8 1 1 ...
0 . 5 2 8 9 1 ...
0 . 3 6 5 9 3 ...
0 . 9 7 0 4 5 ...

 

 
The resulting number b is a real number, because it is an infinite decimal.  Because b 
cannot be 0.999999… or 0.000000…  it cannot be 0 or 1. Therefore b is strictly between 
0 and 1.  Because b is strictly between 0 and 1, it must fall somewhere on our list of real 
numbers, but we have specifically constructed b such that b will not appear on our list.  If 
it were the nth element of the list, then the nth decimal entry will have a different value 
(and thus it could not be equal to any of them).. 
 
Thus b cannot be an element of our list, and we have reached a contradiction, so our 
assumption is false.  Therefore the real numbers between 0 and 1 are not denumerable. 
 



Theorem: The real numbers are of the same cardinality as the numbers in the set ( )0,1 . 
We can use any rational expression of the correct form to show this.  We'll examine 

( ) ( )
2 1

1
xf x

x x
−

=
−

.  This clearly has a root at 1
2

x = , and vertical asymptotes at 0 and 1.  

Examining the derivative of our function, we find that it is strictly positive in the interval 
( )0,1 , so we have a one-to-one function whose range is ( ),−∞ ∞ .  Thus, on the domain 

( )0,1  we have a bijection: ( )
1 1

: 0,1
onto

f
−

→ , so the cardinalities of these two sets are 

equivalent. 
 
Corollary: The real numbers are not countable. 
 
Diagonalization Miscellanea 
 
We can use this same argument with binary strings, viewing these binary strings as 
infinite binary expansions of numbers in this same interval, and arrive at the same 
contradiction (but with a few minor issues having to do again with ambiguity imposed by 
a tail of repeating 1s).  We'll view this in different way that removes this issue.  Instead, 
think of this sequence of 1s and 0s as a sequence of Boolean values, each of which 
establishes if a particular element of the natural numbers is present or not present (where 
each place corresponds to exactly one natural number). 
 
Each of these strings can be viewed as a description of one possible subset of the natural 
numbers, and every possible subset is ultimately enumerated.  Through the same 
diagonalization argument, we can establish that the power set of the natural numbers is 
not the same cardinality as the natural numbers.  This holds in general, but is the topic of 
the next section. 
 
In fact, the Diagonalization problem has significant applications beyond set theory.  The 
Halting Problem from computer science (which asks if an arbitrary Turing machine with 
finite state information will halt, given a finite length program),  can be shown reduce to 
a diagonalization argument!  In this setting, this shows that the Halting problem is 
undecidable, and thus there is no algorithm for making this determination. 
 
More Set Theoretic Fun 
 
We can use the tools provided to examine some rather unusual sets.  We can define the 
Cantor set by starting with the closed interval [ ]0,1 , and removing a sequence of "open 
thirds".  More formally: 

Let [ ]1
1 20,1 \ ,
3 3

c ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 2 1
1 2 7 8\ , ,
9 9 9 9

c c ⎛ ⎞⎛ ⎞ ⎛ ⎞= ∪⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
, etc. The Cantor set is lim nn

C c
→∞

= . 

One can establish that this set is non-empty by following the endpoints of the closed 
intervals.  Further, one can sum the lengths of the removed intervals, resulting in a 
geometric sum that converges to 1, implying that we have, in some sense, removed all the 



content.  This argument can be formalized by appealing to some measure theory, upon 
which we find that the Cantor set is of measure zero. 
 
Finally, one can make a map from { }: 0,1Cψ ∞→ , where we take any point from the 
Cantor set and categorize it based on whether it lies to the left or the right of that round's 
removed interval.  Thus, each point can be uniquely described by a sequence of 
"left/right" decisions, which correspond to "0/1" digits, respectively.  Thus, we know that 
the Cantor set's cardinality is at least as large as the real numbers, by the subset argument 
previously.  Further, the Cantor set is a proper subset of the real numbers, so we know 
that the cardinality of the real numbers is at least as large as the cardinality of the Cantor 
set.  Thus, we know that the cardinality of the Cantor set is the same as the cardinality of 
the real numbers!  Thus have a measure-zero subset of the real numbers which is 
uncountably large! 
 
The Axiom of Choice 
The axiom gets its name not because mathematicians prefer it to other axioms. 
    — A. K. Dewdney  
 
The Axiom of Choice is an interesting aside regarding set theory. 
 
Definition: Let C be a collection of nonempty sets (∅ ∉ C).  A choice function, f, is a 

function such that for all X ∈ S, f(X) ∈ X.  (Intuitively, we can choose a member from 
each set in that collection.) 
 
Axiom of Choice (Axiom of Choice):  Every family of nonempty sets has a choice 
function. 
 
The Axiom of Choice was formulated by Zermelo in 1904.  This axiom is non-
constructive, and it guarantees the existence for a choice function, but gives no indication 
how to make such a function.  Because of the non-constructive nature of the axiom and 
some of the fairly non-intuitive results of the axiom, it didn't gain broad acceptance until 
quite recently.  In 1940, Kurt Gödel proved that (as long as the pre-existing axioms were 
without contradiction) adding the axiom of choice did not lead to a contradiction with the 
axioms set theory. In 1963, Paul Cohen demonstrated that adding the negation of the 
axiom of choice to the axioms of set theory also leads to no contradiction (assuming, 
once again that the axioms were consistent to begin with), thus the Axiom of Choice is 
independent of Zermelo-Fraenkel (ZF) set theory. 
 
In general, the Axiom of Choice is required in order to make arbitrary choices from a 
family of sets.  There are a few specific instances where the Axiom of Choice is not 
necessary to accomplish this task: 

• If each set in the family is a singleton. 
• If there are only finite sets in the family (induction on the number of sets in the 

family suffices to show that selection can occur for any finite number of sets) 



• If each X ∈ S contains only a finite number of ordered (distinguishable) items, 
(e.g., f(X) = the least element of a finite set) 

 
Russell phrased it as this: If we have ℵ0 null pairs of shoes, then we can select one shoe 
from each pair without the axiom of choice (just choose the left shoe for each pair).  But, 
if we had ℵ0 pairs of socks, then we need the Axiom of Choice to pick one from each set 
(because socks are not distinguishable from each other). 
 
The Axiom of Choice has many equivalent statements.  A few of the most compelling 
are: 

• For any relation R there is a function F ⊆ R, with domain(F) = domain(R) 
• The Cartesian product of a non-empty family of non-empty sets is non-empty. 
• For any two sets C and D, C  D or D  C (i.e., the cardinality of any two sets is 

comparable) 
 
Banach-Tarski Paradox: Using the Axiom of Choice, it is possible to take the 3-
dimensional closed unit ball, and partition it into finitely many pieces, and move those 
pieces in rigid motions (i.e., rotations and translations, with pieces permitted to move 
through one another) and reassemble them to form two copies of B.  (Note, the pieces of 
the ball are not Lebesgue measurable.) 
 
The Axiom of Choice is also equivalent to a very non-intuitive theorem, known as the 
Well-ordering theorem.  For this theorem, we'll need some additional definitions. 
 
Definition A binary relation, < , is a total-ordering of a set S if for all p, q, r in S: 
 p p</  (< is irreflexive) 
 If p < q and q < r then p < r (< is transitive) 
 For all p, q in S, p < q or p = q or q < p 
A binary relation < is a well-ordering of a set S if 
 (S, <) is a total-ordering. 
 Every subset of S has a least element 
 
Definition An element a ∈ X is the least element of X if ( )x X a x∀ ∈ ≤  
 
Any subset of the positive integers is a well-ordered under the standard "<" operator (by 
the Well Ordering Principle of the integers). 
 
Zermelo's Well Ordering Theorem: Every set can be well ordered. 
 
This appears to contradict a fundamental characteristic of open intervals on the real line 
(that there is no minimal element by our standard less than ordering), but it does not.  
Sadly, the reason that it does not is that we are told that an ordering exists, but we are not 
told that this ordering will actually, in any way, reflect our notions on the structure of the 



real line.  That is to say, the ordering could well be utterly without use other than to win 
arguments on pedantic grounds. 
 
Another statement that is equivalent to the Axiom of Choice is called Zorn's Lemma: 
 
Zorn's Lemma: If (X, <) is a nonempty partially ordered set such that every chain 
(totally ordered subset of X) in X has an upper bound, then X has a maximal element. 
 
Zorn's lemma (and thus the Axiom of Choice) is used to prove several well known 
results: 

• Every vector space has a basis 
• Every field has a unique algebraic closure 
• Tychonoff's Theorem: Any product of compact topological spaces is compact 

(Note: for compact Hausdorff spaces Tychonoff's Theorem is equivalent to the 
Boolean Prime Ideal Theorem (Rubin and Scott 1954) and hence weaker than the 
Axiom of Choice.) 

 
More generally, the Axiom of Choice is used to prove many other familiar results: 

• The countable union of countable sets is countable. 
• The Baire Category Theorem (a weakened version of Axiom of Choice is required 

here: The Axiom of Dependent Choice) 
• Every infinite set has a denumerable subset 

 
The generalized continuum hypothesis (GCH) is not only independent of ZF, but also 
independent of ZF plus the axiom of choice (ZFC).  However, if one assumes the the ZF 
axioms and GCH, then one can derive the Axiom of Choice, making GCH a strictly 
stronger claim than Axiom of Choice. 
 
Q: What's sour, yellow, and equivalent to the axiom of choice? 
A: Zorn's lemon. 
 
Conclusion 
Why is this proof beautiful?  There are many reasons; it fulfills all of Hardy's criteria for 
beauty: 
The diagonalization proof is an easy, elegant proof.  This makes it an easy proof to teach, 
and an easy proof to understand. 
It is non-obvious.  Why should there be different types of infinity, after all? 
 
Why has this proof endured?  Well, the principal reason that must be noted is that it 
hasn't endured for very long yet.  It's only a bit over 100 years old at this point.  But we 
do suspect that it will endure as it is easy and surprising, and it has a significant impact 
on many diverse areas of mathematics.  Almost any area of mathematics that gets 
coupled with set theory, and which uses infinite sets, runs into these notions. 
 



"The fear of infinity is a form of myopia that destroys the possibility of seeing the actual 
infinite, even though it in its highest form has created and sustains us, and in its 
secondary transfinite forms occurs all around us and even inhabits our minds. " 
Georg Cantor 
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Homework for Chapter 11 
 
1) What is Hardy's basic argument that mathematicians should be allowed to do 
mathematics. 
 
 
 
 
 
2) Produce a bijection between the even and odd numbers. 
 
 
 
 
 
3) Produce a bijection between ( )0,1  and  that is different than the one discussed in 
class. 
 
 
 
 
4) What is the danger of allowing the choice of 0 or 9 in Cantor's digitalization proof? 
 
 
 
 
 
 
5) The Cantor Set can be defined by starting with the closed unit interval [ ]0.1 , and 
continuing to remove middle third of the remaining closed intervals.  More formally: 

Let [ ]1
1 20,1 \ ,
3 3

c ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 2 1
1 2 7 8\ , \ ,
9 9 9 9

c c⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
, etc. The Cantor set is lim nn

c c∞ →∞
= . 

a) Argue that the Cantor set is not empty. 
 
 
 
b) What is the size of the removed portion of the Cantor set? (Hint, consider summing the 
lengths of the removed portions.) 
 
 
 
 
Extra Credit: 
What is the cardinality of the Cantor set, and why? 


