
Complexity of the (Effective) Chinese Remainder Theorem

This is an alternate derivation of the time complexity of the effective Chinese remainder the-
orem (CRT). The CRT allowed us to take a system of k congruences of the form x � ai

.mod ni/, where each of the ni are pairwise co-prime, and find all the solutions, which are
of the form:

x �

kX
iD1

ai

N

ni

"�
N

ni

��1
#

ni

.mod N / ()

where

N D

kY
iD1

ni .

This analysis proceeds by deriving time complexity bounds for the following operations:

. Calculating N .

. Calculating the additive terms in equation ().

. Calculating the sum of all these terms.

We must first calculate the value of N . For notational convenience, we define Ni D
Qi

j D1 nj

and `i D len .Ni/. To calculate Nj requires that we have first calculated Nj �1, and then we
multiply nj with Nj �1. This single multiplication requires time O.len

�
nj

�
`j �1/. Note that

len
�
nj

�
D len

�
Nj

�
� len

�
Nj �1

�
D `j � `j �1, so

len
�
nj

�
`j �1 D .`j � `j �1/`j �1

D `j `j �1 � `2
j �1

� `2
j � `2

j �1.

We can thus say that this single multiplication requires time O.`2
j � `2

j �1/.

Calculating Nj �1 in turn requires that we first calculate Nj �2, and so forth, down to N2. (N1 D

n1, so there is no calculation required for N1). Summing, we find that calculating Nj can occur
in O.f .j //, where

f .j / D

jX
iD2

�
`2

i � `2
i�1

�
(A telescoping series!)

D .��̀
2
2 � `2

1/ C .��̀
2
3 � ��̀

2
2/ C � � � C .

�
��`2

j �1 �
�
��`2

j �2/ C .`2
j �

�
��`2

j �1/

D `2
j � `2

1.
The book asks you to develop a different approach in exercises . and ., which were not assigned.

As N D Nk , calculating N can thus be accomplished in time

O.len .N /2/. ()

We now examine each of the terms of the sum in equation ():

We do not need to calculate ai (it is provided as input). The term ai can be represented by a
non-negative integer less than ni , so it is of size no larger than len .ni/.

The integer N=ni has length no larger than len .N / � len .ni/, so this division occurs in

O.len .ni/ .len .N / � len .ni///. ()

The term
�
.N=ni/

�1
�

ni
requires a few steps to calculate. The integer division was already calcu-

lated in the prior step, so we first calculate the integer N=ni .mod ni/, which requires another
division (recall, division also provides us with the remainder!). The result of this division is no
larger than len .N / � 2len .ni/, so the division occurs in time

O.len .ni/ .len .N / � 2len .ni///. ()

The remainder is no larger than len .ni/. We then need to find the inverse of this remainder
modulo ni , which can occur using the extended euclidian algorithm; this result’s length is
again no longer than len .ni/, and this inverse computation can occur in time

O.len .ni/
2/. ()

Multiplying the resulting ai with N=ni results in an integer less than N (as ai < ni), so the
result is no larger than len .N / and this multiplication computation occurs in time

O.len .ni/ .len .N / � len .ni///. ()

Multiplying the above result with
�
.N=ni/

�1
�

ni
results in an integer no larger than len .N / C

len .ni/, and this multiplication computation occurs in time

O.len .ni/ len .N //. ()

Reduction of this final product modulo N through division results in an integer no larger than
len .ni/, and this reduction computation occurs in time

O.len .ni/ len .N //. ()

Combining the results of equations (), (), (), (), (), and (), we find that term of the sum



in equation () can be computed in time

O.len .ni/ .len .N / � len .ni///

CO.len .ni/ .len .N / � 2len .ni///

CO.len .ni/
2/

CO.len .ni/ .len .N / � len .ni///

CO.len .ni/ len .N //

CO.len .ni/ len .N //

DO.5len .ni/ len .N / � 3len .ni/
2/

DO.len .ni/ len .N // ()

Thus computing terms of the sum in equation () occurs in time O.g.N // where

g.N / D

kX
iD1

len .ni/ len .N /

D len .N /

kX
iD1

len .ni/ ()

D len .N /2 . ()

The transition between equations () and () occurs because N D
Qk

iD1 ni , so len .N / DPk
iD1 len .ni/.

As previously noted, each of the terms in this sum are surprisingly of length no longer than
len .ni/ aer reduction, but we wish to do these additions modulo N , so a loose bound on this
final summation computation would be k � 1 additions, each of which takes no more than
O.len .N //, which results in an integer result no longer than len .N /, and this summation
computation occurs in time O..k � 1/len .N //. We finally note that each ni � 2, so N > 2k,
thus len .N / > k C 1 > k � 1. Using this bound gives us a time complexity for the addition
computation of

O
�
len .N /2

�
. ()

Referring to equations (), (), and (), we find that the entire effective CRT computation
occurs in time O.len .N /2/.



