
The Minimum of n

Independent Normal Distributions

Joshua E. Hill
e-mail: josh-math@untruth.org

Initial Release: April , 
Current Revision: August , 

Problem: We have a race of n runners. What is the probability that
a particular runner will win?

Each runner’s event time can be viewed as a random variable, which
we’ll assume is distributed normally with a runner-specific mean and
standard deviation for their time. The j th runner’s time is distributed
as Xj � NormalDistribution

�
�j ; �2

j

�
(that is, normally distributed

with mean �j and standard deviation �j ).
First, let’s examine the n D 2 case, that is the chance in a two per-

son race that the first runner wins. We want Pr.X0 < X1/ where X0

and X1 are distributed via different normal distributions (assumed in-
dependent). This is equivalent to Pr..X0 � X1/ < 0/, so you’re sub-
tracting two normal distributions (or adding X0 with �X1, it doesn’t
matter) which results in another normal distribution. .X0 � X1/ �

NormalDistribution.�0 � �1; �2
0 C �2

1 /, so you get a simple calcula-
tion (an integral conducted via numerical methods or a table lookup)
to figure what Pr..X0 � X1/ < 0/ is.

For more than two runners, it becomes a bit harder.
The way one would actually, in practice, solve this problem is to

program a simulation and run many thousands of rounds of simulation
given your particular data.

For a proper mathematical solution, the probability for player  to
win in a race with n C 1 runners total is Pr.X0 < Y /, where

Y D min
1�j �n

Xj

That is, Y is the distribution of the smallest time from the remaining
n runners.

To find the distribution of Y , we first look for its cumulative distri-
bution function (CDF). In the standard setting, we would follow this



August ,  Hill

up by taking the derivative of the CDF to get the PDF, but we don’t
proceed in this way.

We start with some results for a single variable; we’ll write the nor-
mal complementary cumulative distribution function as Fc .

Pr.Xj > a/ D Fc.a/

D 1 � Pr.Xj � a/

D 1 �
1

2

 
1 C erf

 
x � �j

�j

p
2

!!
D

1

2

 
1 � erf

 
x � �j

�j

p
2

!!
D

1

2
erfc

 
a � �j

�j

p
2

!
Where erfc is the complementary error function, defined as

erfc.x/ D 1 � erf.x/ D 1 �
2

p
�

Z x

0

e�t2

dt D
2

p
�

Z 1

x

e�t2

dt

The probability Y � a can be more easily viewed as the probability
of the complement; that is, what is the chance that every Xj .j � 1/,
is strictly greater than a. This will be in terms of the complementary
cumulative distribution function for the distribution Xj , which we’ll
call Fc;j . We can define the cumulative distribution function for Y :

Pr.Y � a/ D 1 � Pr.X1 > a and X2 > a and : : : and Xn > a/

D 1 �

nY
j D1

Pr.Xj > a/ (the distributions are independent)

D 1 �

nY
j D1

Fc;j .a/

D 1 �

nY
j D1

 
1

2
erfc

 
a � �j

�j

p
2

!!

D 1 �

nY
j D1

1
p

�

Z 1

a��j

�j

p
2

e�t2

dt

D 1 �

nY
j D1

1

�j

p
2�

Z 1

a

e
�

�
t��j

�j

p
2

�2

dt

D 1 �
1�Qn

j D1 �j

� �p
2�
�n

Z 1

a

� � �

Z 1

a

e
� 1

2

Pn
j D1

�
tj ��j

�j

�2

dt1 : : : dtn

Page  of 



August ,  Hill

From this last form, we can phrase this in terms of a multivariate
normal distribution, with a covariance matrix

S D
�
�2

i ıi;j

�
i;j

D

�
�2

1 0

�2
2

: : :

�2
n�1

0 �2
n

�

With this convention, taking

t D

�
t1
:::

tn

�

and � D

�
�1

:::

�n

�

Pr.Y � a/ D 1 �
1�Qn

j D1 �j

� �p
2�
�n

Z 1

a

� � �

Z 1

a

e
� 1

2

Pn
j D1

�
tj ��j

�j

�2

dt1 : : : dtn

D 1 �
1

p
det S

�p
2�
�n

Z
.a;1/n

e� 1
2

.t��/S�1.t��/T
d t

D 1 �

Z
.a;1/n

f .t/ d t

where f .t/ is the PDF for this multivariate normal distribution

f .t/ D
1

p
det S

�p
2�
�n e� 1

2
.t��/S�1.t��/T

We actually need Pr.Y > a/, which, by the above, is
R

.a;1/n f .t/ d t

We’ll refer to the PDF of X0 as g.s/ D
1p

2��2
0

e
� 1

2

�
.s��0/2

�2
0

�
. We

want to calculate

Pr .X0 < Y / D

Z 1

�1

Pr .X0 D s/ Pr .Y > s/ ds

D

Z 1

�1

g.s/

Z
.s;1/n

f .t/ d t ds

D

Z
�.1;1/

Z
.s;1/n

g.s/f .t/ d t ds

Page  of 



August ,  Hill

As may be clear from the above, multiplying the PDFs from inde-
pendent normal distributions gives a multivariate normal distribution,
so the product of f and g yields another multivariate distribution in
one additional variable; the covariance matrix would be

W D
�
�2

i ıi;j

�
i;j

D

�
�2

0 0

�2
1

: : :

�2
n�1

0 �2
n

�

With this convention, taking

v D

˙
v0

v1

:::

vn

�

and �f D

˙
�0

�1

:::

�n

�

and we get the PDF for this new distribution:

h.v/ D
1

p
det W

�p
2�
�nC1

e� 1
2.v��f /W �1.v��f /

T

so our final probability is:

P r .X0 < Y / D

Z
.�1;1/

Z
.s;1/n

h.s; t1; : : : ; tn/ d tds

That’s a wonderful clear statement conceptually, but doing calcu-
lations using this multivariate case is impractical. To do calculations,
it is much preferable to stop much much sooner in the calculation:

Pr .X0 < Y / D

Z 1

�1

Pr .X0 D s/ Pr .Y > s/ ds

D

Z 1

�1

g .s/

nY
j D1

Fc;j .s/ ds

D

Z 1

�1

1p
2��2

0

e
� 1

2

�
.s��0/2

�2
0

�
nY

j D1

 
1

2
erfc

 
s � �j

�j

p
2

!!
ds

The Mathematica code that does this calculation is provided in List-
ing .

Page  of 



August ,  Hill

Listing : Direct Calculation Approach

WinProb[playerList_] := Module[{u, v},
u = PDF[playerList[[1]], x];
v = Product[Integrate[PDF[playerList[[j]], t],

{t, x, Infinity}],
{j, 2, Length[playerList]}];

NIntegrate[u*v, {x, -Infinity, Infinity}]
]

Here, we simply pass in a list containing the player time distri-
bution (the analysis above only supports passing in normal distribu-
tions!).

To confirm that this works correctly, we can also create a routine to
do this in simulation, provided in Listing .

Listing : Simulation Approach

WinProbSim[playerList_, rounds_] :=
Module[{wins = 0, cntr, curRound},
For[cntr = 0, cntr < rounds, cntr++,
curRound = Map[RandomReal, playerList];
If[curRound[[1]] == Min[curRound], wins++]
];

wins/rounds
]

Running this proceeds in the same way, other than the fact that we
need to tell the routine how many rounds to use in the simulation.

The intuitive case (where all runners have exactly the same char-
acteristics) work out as expected (in the n player case, player  has a
probability of 1

n
of winning.

If we instead examine a race between  runners (player  to ) in
the  meter dash, where all players have an even time standard devi-
ation of  second (wildly high, of course). Runners  through  have
an average event time of . seconds (the world record for this event).
Runner ’s mean time is shown as an advantage from the central time
of . seconds, so his mean race time varies from . (advantage is )
to . (advantage is ).

The code that implements this race is presented in Listing .

Listing : Race  (Calculated)

FirstRace = Table[NormalDistribution[9.58, 1],
{i, 1, 19}];

AdvData =
Table[{adv, WinProb[Prepend[FirstRace,

NormalDistribution[9.58 - adv, 1]]]},
{adv, 0, 5, .05}];

Page  of 



August ,  Hill

To run the same race in simulation, we instead use the code in List-
ing .

Listing : Race  (Simulation)

AdvSimData =
Table[{adv, WinProbSim[Prepend[FirstRace,

NormalDistribution[9.58 - adv, 1]],
10000]}, adv, 0, 5, .05}];

When the simulation is run with , simulation rounds, the
symbolic calculation is very close to the simulated result. Figure  de-
picts these results, with runner ’s advantage shown on the x-axis and
the probability that runner  wins shown on the y-axis.

Figure : Race  Results

Let’s now examine the situation where there is a wider array of run-
ners. In this race, we’ll include  runners, with all runners having an
event time standard deviation of . seconds (still ridiculously high).
Runners - have a mean time of . up to . seconds (they are each
separated by / of a second). Runner ’s mean time is again shown
as an advantage from the central time of . seconds, so it varies from
. seconds (advantage is ) to . seconds (advantage is ). This ad-
vantage is shown on the x-axis. The probability that runner  wins is
shown on the y-axis.

Direct computation (via numerical approximation) is accomplished
using the code in Listing .

Page  of 



August ,  Hill

Listing : Race  (Calculated)

SecondRace = Table[NormalDistribution[9.58 + offset,
.5], {offset, -2, 2, 4/9}];

SecondRaceAdvData =
Table[{adv, WinProb[Prepend[SecondRace,

NormalDistribution[9.58 - adv, 0.5]]]},
{adv, 0, 5, .05}];

Simulation is accomplished using the code in Listing .

Listing : Race  (Simulation)

SecondRaceAdvSymData =
Table[{adv, WinProbSim[Prepend[SecondRace,

NormalDistribution[9.58 - adv, 0.5]],
10000]}, {adv, 0, 5, .05}];

Again, these produce very similar results, as seen in Figure .

Figure : Race  Results

Page  of 



August ,  Hill

Colophon
The text of this document is typeset in Jean-François Porchez’s won-

derful Sabon Next typeface. Sabon Next is a modern () revival of
Jan Tschichold’s  Sabon typeface, which is in turn a adaptation of
the classical (in all meanings) Garamond typeface, which dates from
the early th century.

Equations are typeset using the MathTime Professional II (MTPro)
fonts, a font package released in  by the great mathematical expos-
itor Michael Spivak. These fonts are designed to work with the Times
typeface, but they blend well with most classical fonts.

Source listings are typeset in Microso’s Consolas, a monospace
font with excellent readability.

X ETEX was used to typeset the document, which is in turn offspring
of Donald Knuth’s profoundly important TEX. X ETEX was selected in
order to gain access to modern fonts without the trauma involved in
converting them to a representation that pdfTeX could deal with. This
approach makes most (though sadly, not all) OpenType features avail-
able, and sidesteps the traditional limit of  glyphs per font.

WinEdt  was used as an editor. Diagrams were produced in Math-
ematica.

Page  of 


