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Introduction

we’ll talk about Number Theoretic RBGs.
We’ll talk about the desired goals of any reasonable RBG.

We’ll provide a specification for the Dual Elliptic Curve
Deterministic RBG.

We’ll discuss the relevant problems.
We’ll describe some attacks on this DRBG

v

\

\

v

v

‘1.5 UNIVERSITY of CALIFORNIA - IRVINE

4/38



Background
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| mean, what’s the point?

» There are many quick, well-designed RBGs in the world.

» They are generally based on ad-hoc assumptions and their security
is dependent on some underlying security primitive.

» We would ideally have some RBG that was as secure as some very
difficult problem.

» The “I’d have bigger problems” design ideal.
» Such algorithms do exist!
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That’s HARDCORE!

Definition

A hardcore bit (also called “hardcore predicate”) is a single bit
associated with a one way function. Guessing this bit with any
significant advantage is equivalent to reversing the associated one-way

function.
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BBS my Heart!

» We have already discussed one such RBG whose security analysis
uses this notion: The Blum-Blum-Shub RBG.
Definition
Seed the RBG with 2 < xo < n — 1 such that (xo, n) = 1. Future states
are calculated as x; = sz_1 (mod n). The jth output, rj, is a hardcore bit,
generally the parity of x;.

4.5 UNIVERSITY of CALIFORNIA « IRVINE

8/38



So, “Presentation Accomplished”?

» One bit per modular squaring is not exactly quick...
» Security bounds are a killer...

m 128 bit security requires a 3072 bit modulus.

m 256 bit security requires a 15360 bit modulus.

» If the modulus is k bits long, these multiplications each take at
least O(klog kloglogk).
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If the modulus is k bits long, these multiplications each take at
least O(klog kloglogk).

... per bit output...
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Blum-Micali Random Bit Generator

A more closely related design to the deterministic RBG that we are
looking at today is:

Definition
The Blum-Micali Number Generator is specified by a (large) prime p, a
generator g of multiplicative order p — 1 and an initial value xo. The jth

value is then x; = g¥—' (mod p). The jth output bit, r;, is Tif x; < ”7_1
and 0 otherwise.

» Surely no performance problem here!

» If the modulus is k bits long, modular exponentiation occurs in
O(k? logkloglog k).
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GOOOOOO0000000000O0OOOOOOOOOO00ALS!

Security Goals of the Dual EC DRBG
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Cryptographic Random Bit Generator

Definition
A cryptographic random bit generator, with security bound L bits,
produces sequences of random bits (Ry,R>, ..., R,) such that

1. The generator is unbiased: Pr (R; = 0) = 1.

2. The bits are uncorrelated: Pr (R = O|R, Rz, ... . Ri—1) = 1.

3. Negligible advantage: An attacker can’t distinguish between a

“true” random bit generator and the cryptographic random bit
generator without performing at least 2! operations.

S
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Backtracking Resistance

Definition

Backtracking resistance is provided relative to time T if there is
assurance that an adversary who has knowledge of the internal state of
the DRBG at some time subsequent to time T would be unable to
distinguish between observations of ideal random bitstrings and
(previously unseen) bitstrings that were output by the DRBG prior to
time T.

NIST SP 800-90A
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Prediction Resistance

Definition

Prediction resistance is provided relative to time T if there is assurance
that an adversary who has knowledge of the internal state of the DRBG
at some time prior to T would be unable to distinguish between
observations of ideal random bitstrings and bitstrings output by the
DRBG at or subsequent to time T.

NIST SP 800-90A

> Note that this requires reseeding for any deterministic design.
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Cycle Resistance

Definition
The random bit generator is said to have cycle resistance if there is a

negligible probability that the generator enters a cycle when used as
specified.

Here negligible probability means less than 2749,
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Specifications of our Lives

The Dual EC DRBG Specification
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Helper Functions

> ¢(-) converts a field element to an integer in a canonical way.

> x(-) takes the x-coordinate in affine coordinates in the provided
model for the EC.

» “Extract Bits” takes the rightmost (LSBs) of the value.
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The Algorithm

1
Instant. or
reseed only

- r Extract
0(x (s*Q) Bits

[Optional]
additional input
0 Q Pseudorandom
! Bits

If additional input = Null

NIST SP800-90A
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Parameters

v

The generator is intended to produce no more than 232 blocks
between reseeding events.

» Pand Q are obviously very important to the security of this
generator.

v

Three curves (along with associated P and Q values) are provided.

\

There is a procedure for generating your own values of P and Q.
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When you ASSUME...

Underlying Theoretical Basis of Security
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Elliptic Curve Decisional Diffie-Hellman Problem

Definition

Given an elliptic curve E and basepoint P, an attacker cannot
distinguish between (gP, rP, grP) and (qP, rP, zP), where g, r, and z are
random values.

B
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Truncated Point Problem

Definition

Let R be a random point and b a random bitstring matching the length
of the output of the truncation function, t. The problem of
distinguishing between t(¢(x(R))) and b is the Truncated Point Problem.

See [Brown, Gjgsteen 2007]
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x-logarithm Problem

Definition

Let E be an elliptic curve over [y, P € E(Fy). Let Z € E(IF4) be chosen
uniformly at random and d a random integer in the range [0, n — 1]. The
x-logarithm problem is the problem of distinguishing between dP and

X(2)P.
See [Brown, Gjgsteen 2007]
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No “There” There

A Attacks, Findings and Notes
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Inadequate Truncation

vy v vy VY Yy

\

Due to [Schoenmakers, Sidorenko 2006]

If too few bits are truncated, the generator has a predictor.
This is as a result of modular arithmetic mod a prime.

For k-bit random integers in [0, 2X — 1], the /th bit is random.

If we restrict to some other (non-power of two length) range, this
is no longer true.

Thus, there is a small bias associated with the high order bits.
Solution: remove at least 17 bits.
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Too Much Truncation

» Asymptotic estimates of the distribution of x-coordinates by
Shparlinski suggest that too much truncation may make a
predictor possible as well.
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The LSB for Binary Fields

Due to [Brown, Gjgsteen 2007]
A set of elliptic curves over binary fields are specified by NIST.
B-409 and K-409 (both over F,09) are such binary fields.

These fields have the property that the LSB of the x value is fixed,
so should be discarded.
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“The Back Door”

» Due to [Shumow, Ferguson 2007]
» NIST Prime curves have prime order.

» Thus there is an integer e so that eQ = P.

» The Attack: An attacker knows e and the prior output R, and the
number of bits the system truncates, m.

m The attacker iterates through all 2™ possible values for x, say

X1, ...,Xom,
m If §; = x? + ax;+ b (mod p) is a square, then (x;, +/3)) are points
on our EC.

m The correct point, A, must be in the resulting list.
B We have A = sQ, so eA = s(eQ) = sP, so ¢(x(eA)) is then the next
internal state!

» This attack difficulty increases exponentially with the number of
bits truncated.
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“The Back Door”
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Does the NSA know e for the provided curves? @ sy or Cavroraia - Ivine
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Computational Notes

» This generator is orders of magnitude slower than any of the
common (non-number theoretic) RBG designs.

» It is considerably faster than any of the common number theoretic
RBGs.

m EC security (exponential) vs non-EC security (often
sub-exponential).

m Other EC generators output only a single bit per EC point scaling
operation.

4.5 UNIVERSITY of CALIFORNIA « IRVINE

33/38



Section 7

Conclusion
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Today’s Conclusion

» Reseed often.
» Generate your own P, Q.
» Truncate aggressively, but not too aggressively.

S
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That’s All Folks!

Thank You!
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Colophon

» The principal font is Evert Bloemsma’s 2004 humanist sans-serif
font Legato. This font is designed to be exquisitely readable, and
is a significant departure from the highly geometric forms that
dominate most sans-serif fonts. Legato was Evert Bloemsma’s
final font prior to his untimely death at the age of 46.

» The URLs are typeset in Luc(as) de Groot’s 2005 Consolas, a
monospace font with excellent readability.
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