
.

......

Joux’s Recent Index Calculus Results
Part II: The Function Field Sieve and Joux’s Improvements

Joshua E. Hill

Department of Mathematics, University of California, Irvine

Cryptography Seminar
June Ļ, Ĺķĸĺ

http://bit.ly/ĸĹŀpĸIf
vĸ.ķ

ĸ / ļļ

http://bit.ly/129p1If

Talk Outline

ĸ Introduction

Ĺ Modern Approaches to the Discrete Logarithm Problem

ĺ Conclusion, Mk. II

Ĺ / ļļ

Introduction Outline

ĸ Introduction
From Part I
The Current State of Affairs

Ĺ Modern Approaches to the Discrete Logarithm Problem

ĺ Conclusion, Mk. II

ĺ / ļļ

Subsection ĸ

From Part I

Ļ / ļļ

Discrete and Discreet

.
Definition..

......

Given a finite group G (written multiplicatively), and a generator g 2 G,
given t D g` for some ` 2 Z, calculate `. This is called the discrete
logarithm, and is denoted logg .t/ D `.

ļ / ļļ

A reminder of an earlier time...

.
Definition..

......
Ln.˛; c/ D exp

�
.c C o.ĸ// .log n/˛ .log log n/ĸ�˛

�

Ľ / ļļ

Last Time, on CSI:Discrete Logarithm

I The Discrete Logarithm Problem in groups with composite order
can be decomposed.

I Solving Discrete Logarithm Problems is Hard.
I There are a set of algorithms that are deterministic

Brute Force runs in O.n/ and requires little storage.
Baby Step, Giant Step runs in O.

p
n/ and requires O.

p
n/ storage.

I There are more powerful algorithms that are probabilistic
Pollard’s �-method runs (heuristically, probabilistically) in O.

p
n/

and requires little storage.
Index Calculus for problems in Fp runs (probabilistically) in
Lp

�
ĸ=Ĺ;

p
Ĺ

�

ľ / ļļ

Subsection Ĺ

The Current State of Affairs

Ŀ / ļļ

SI FUERIS ROMAE, ROMANO VIVITO MORE...

Algorithm Selection Depends on Setting

Fq Algorithm Complexity Field Size Comp. Size Year

Fp NFS¹ Lp Œĸ=ĺ� ļĺķ-bit Ŀ:Ľļ CY Ĺķķľ
FĹp FFS² Lq Œĸ=ĺ� Ľĸĺ-bit Ĺ:ļ CY Ĺķķļ
Fpn FFS³ Lq Œĸ=ĺ� ļļĽ-bit ķ:ķķĸ CY Ĺķķļ

¹[Joux-Lercer ĹķķĹ]
²[Adleman ĸŀŀĻ]
³[Joux ĹķķĽ]

ŀ / ļļ

ROMANES EUNT DOMUS!

Algorithm Selection Depends on Setting

Fq Algorithm Complexity Field Size Comp. Size Year

Fp NFS Lp Œĸ=ĺ� ļĺķ-bit Ŀ:Ľļ CY Ĺķķľ
FĹp FFS Lq Œĸ=ĺ� Ľĸĺ-bit Ĺ:ļ CY Ĺķķļ
Fpn FFS Lq Œĸ=ĺ� ļļĽ-bit ķ:ķķĸ CY Ĺķķļ
Fpn JICĸ⁴ Lq Œĸ=ĺ� ĸĻĹļ-bit ķ:ķĽ CY Jan Ĺķĸĺ

⁴[Joux, “Faster Index Calculus for the Medium Prime Case...”]
ĸķ / ļļ

RO-MA-NI EUNT DOMUS!

Algorithm Selection Depends on Setting

Fq Algorithm Complexity Field Size Comp. Size Year

Fp NFS Lp Œĸ=ĺ� ļĺķ-bit Ŀ:Ľļ CY Ĺķķľ
FĹp FFS Lq Œĸ=ĺ� Ľĸĺ-bit Ĺ:ļ CY Ĺķķļ
FĹn FFS⁵ Lq Œĸ=ĺ� ĸŀľĸ-bit ķ:ĹĽ CY Feb Ĺķĸĺ
FĹn JICĹ⁶ Lq Œĸ=Ļ C o.ĸ/� ĸĸľĿ-bit ķ:ķĹ CY Feb Ĺķĸĺ
Fpn FFS Lq Œĸ=ĺ� ļļĽ-bit ķ:ķķĸ CY Ĺķķļ
Fpn JICĸ Lq Œĸ=ĺ� ĸĻĹļ-bit ķ:ķĽ CY Jan Ĺķĸĺ

⁵[GöloMglu, Granger, McGuire, Zumbrägel]
⁶[Joux, “A new index calculus algorithm...”]

ĸĸ / ļļ

ROMANI I DOMUS!

Algorithm Selection Depends on Setting

Fq Algorithm Complexity Field Size Comp. Size Year

Fp NFS Lp Œĸ=ĺ� ļĺķ-bit Ŀ:Ľļ CY Ĺķķľ
FĹp FFS Lq Œĸ=ĺ� Ľĸĺ-bit Ĺ:ļ CY Ĺķķļ
FĹn FFS Lq Œĸ=ĺ� ĸŀľĸ-bit ķ:ĹĽ CY Feb Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĸĸľĿ-bit ķ:ķĹ CY Feb Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĻķĿķ-bit ĸ:Ľĸ CY Mar Ĺķĸĺ
Fpn FFS Lq Œĸ=ĺ� ļļĽ-bit ķ:ķķĸ CY Ĺķķļ
Fpn JICĸ Lq Œĸ=ĺ� ĸĻĹļ-bit ķ:ķĽ CY Jan Ĺķĸĺ

ĸĹ / ļļ

ROMANI ITE DOMUS!

Algorithm Selection Depends on Setting

Fq Algorithm Complexity Field Size Comp. Size Year

Fp NFS Lp Œĸ=ĺ� ļĺķ-bit Ŀ:Ľļ CY Ĺķķľ
FĹp FFS Lq Œĸ=ĺ� Ľĸĺ-bit Ĺ:ļ CY Ĺķķļ
FĹp FFS Lq Œĸ=ĺ� Ŀķŀ-bit ĻĹķķ CY Apr Ĺķĸĺ
FĹn FFS Lq Œĸ=ĺ� ĸŀľĸ-bit ķ:ĹĽ CY Feb Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĸĸľĿ-bit ķ:ķĹ CY Feb Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĻķĿķ-bit ĸ:Ľĸ CY Mar Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĽĸĹķ-bit ķ:ķŀ CY Apr Ĺķĸĺ
Fpn FFS Lq Œĸ=ĺ� ļļĽ-bit ķ:ķķĸ CY Ĺķķļ
Fpn JICĸ Lq Œĸ=ĺ� ĸĻĹļ-bit ķ:ķĽ CY Jan Ĺķĸĺ

ĸĺ / ļļ

ROMANI ITE DOMUM!

Algorithm Selection Depends on Setting

Fq Algorithm Complexity Field Size Comp. Size Year

Fp NFS Lp Œĸ=ĺ� ļĺķ-bit Ŀ:Ľļ CY Ĺķķľ
FĹp FFS Lq Œĸ=ĺ� Ľĸĺ-bit Ĺ:ļ CY Ĺķķļ
FĹp FFS Lq Œĸ=ĺ� Ŀķŀ-bit ĻĹķķ CY Apr Ĺķĸĺ
FĹn FFS Lq Œĸ=ĺ� ĸŀľĸ-bit ķ:ĹĽ CY Feb Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĸĸľĿ-bit ķ:ķĹ CY Feb Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĻķĿķ-bit ĸ:Ľĸ CY Mar Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĽĸĹķ-bit ķ:ķŀ CY Apr Ĺķĸĺ
FĹn JICĹ Lq Œĸ=Ļ C o.ĸ/� ĽĸĽĿ-bit ķ:ķĽ CY May Ĺķĸĺ
Fpn FFS Lq Œĸ=ĺ� ļļĽ-bit ķ:ķķĸ CY Ĺķķļ
Fpn JICĸ Lq Œĸ=ĺ� ĸĻĹļ-bit ķ:ķĽ CY Jan Ĺķĸĺ

ĸĻ / ļļ

Modern Approaches to the Discrete Logarithm Problem

ĸ Introduction

Ĺ Modern Approaches to the Discrete Logarithm Problem
The Number Field Sieve
The Function Field Sieve
Joux’s Index Calculus Algorithm ĸ: Pinpointing
Joux’s Index Calculus Algorithm Ĺ: Relations from Perturbed
Functions

ĺ Conclusion, Mk. II

ĸļ / ļļ

Subsection ĸ

The Number Field Sieve

ĸĽ / ļļ

A Jogging Tour of (G)NFS for Factoring

The Number Field Sieve is a descendent of the Quadratic Sieve:
I To factor a number n find x; y so that xĹ � yĹ .mod n/ non-trivially.
I We then have that gcd.x � y; n/ and gcd.x C y; n/ are non-trivial

factors of n.
I The way we generate such x and y is different than the Quadratic

Sieve.

ĸľ / ļļ

GNFS Factoring Process

I Preliminary Step I: Establish a Ring and Homomorphism and a
Smoothness Base

We proceed by working over two rings, Z=nZ and a number field.
Select a smoothness bound B (over the number field, the bound is
on the absolute norm of the element).
Our smoothness base is comprised of the k primes satisfying our
smoothness bound.

I Run Collection Phase: Find Relations
Sieve on both sides, looking for relations (parity of the exponent of
each term of the smoothness base expressed as elements of F k

Ĺ).
I Solve the resulting linear system

Once we have sufficient relations, we can use linear algebra to find
elements that can be multiplied together to be squares.

I Post processing
Calculate square roots.
Map this square root to the integers via the ambient
homomorphism.
Calculate factors using gcd.

ĸĿ / ļļ

NFS for Logarithms: Preliminaries I

Specializing for Fp, p > ļ:
I Let l be an odd prime divisor of p � ĸ

Note: we must be able to factor p � ĸ.

I Let B be our smoothness bound and treat a 2 Fp as B-smooth if
a 2 Z is B-smooth.

I Let g 2 F�
p and t 2 hgi, both B-smooth.

We have already seen how to proceed if t is not B-smooth.

I We choose Rĸ and RĹ as either:
A number field and the integers (for logarithms in Fp).
Two number fields (in this case, we still call the algorithm “The
Number Field Sieve”).
Two function fields (in this case, we then call the algorithm “The
Function Field Sieve”)

ĸŀ / ļļ

NFS for Logarithms: Preliminaries II

I We need the rings Ri to come with (easy to find) homomorphisms
from �i W Ri ! Fp.

I We construct lth powers, ˛i 2 Ri so that �ĸ.˛ĸ/ D �Ĺ.˛Ĺ/.
I We then have `l � � logg t .mod l/.
I Once we know `l for all values l dividing p� ĸ, we can calculate ` via

the CRT.

Ĺķ / ļļ

Rings and Things you Sing About

I Choose a parameter d so that logĹ p > d � ĸ.
I Take m D

�
d
p
p
˘
and construct the base-m representation of p with

m-ary digits ai:

p D

dX
iDķ

aimi

I Take f.x/ D
Pd

iDķ aix
i. This is irreducible over Q.

I Let ˛ denote a root of f in Q and take Rĸ D Z and RĹ D ZŒ˛�.
I The map �ĸ is just reduction mod p.
I The map �Ĺ is the map sending the monomial bi˛i 7! bimi

.mod p/, respecting addition.

Ĺĸ / ļļ

Sieving

I This proceeds in the same way as with the GNFS (factoring)
algorithm.

I Produces factorizations of the sieved B-smooth elements in our
respective rings.

I Operates elements of the form .a � bm/ 2 Rĸ and .a � b˛/ 2 RĹ.
I Heuristic performance: Lp.ĸ=ĺ/ pairs must be tested.

ĹĹ / ļļ

Linear Algebra

I This seems like a job for... Gaussian Elimination!
I Sadly our old friend is O.rĺ/, which would ruin our bound.
I We use some combination of the Block Wiedmann algorithm, the

Lanczos algorithm, and structured Gaussian Elimination.
I Results in (probable) lth powers, which we use to solve the

logarithm.

Ĺĺ / ļļ

A Computational Example Problem

Due to [Kleinjung, Ĺķķľ]:
I p was chosen as a ļĺĹ-bit prime so that .p � ĸ/=Ĺ is prime (based

on a scaled value of �).
I g D Ĺ is chosen (and generates F�

p).
I An arbitrary target t is chosen (based on a scaled value of e).

ĹĻ / ļļ

NFS Computing Time

I ĿĺĸĹĽĽĽĺľ relations generated in Ľ.Ľ core-years.
I Duplicates are discarded, resulting in ĻĹĺĽľĸĻŀĹ relations.
I Removing singletons and cliques, gives us a ĹĸľľĹĹĽ � ĹĸľľķĹĽ

matrix with ĹĿŀŀľĽĺļķ non-zero entries.
I Processing via the Block Wiedemann algorithm in about ĹĿ

core-years.
I Post processing was accomplished in a few hours.

Ĺļ / ļļ

Subsection Ĺ

The Function Field Sieve

ĹĽ / ļļ

Preliminaries

I Working in Fqn with q D pk.
I As a field, this is obviously Fpkn, but it suits us to tune the

extension degree.
I Our smoothness bases are ideals whose norms are polynomials of

small degree.
I In certain cases (when log q and

p
n log n have the right relation)

our smoothness bases are ideals whose norms are degree ĸ
polynomials.

Ĺľ / ļļ

Rings and Things you Sing About... Still

I Choose parameters dĸ; dĹ minimally so that dĹ D dĸ or dĹ D dĸ C ĸ,
and dĸdĹ > n.

I Choose gĸ.x/ of degree dĸ and gĹ.x/ of degree dĹ in FqŒx� so that
gĹ.gĸ.T// C T has an irreducible degree n factor over Fq, F.T/.

I We then have
Fqn Š Fq ŒT� = hF .T/i

I Define
fĸ.X; T/ D X � gĸ.T/ and fĹ.X; T/ D gĹ.X/ C T

I fĸ and fĹ have a common root X D gĸ.T/.
I We use these polynomials to define our function fields.

ĹĿ / ļļ

Sieving

I We examine elements of the form a.T/X � b.T/ in the two function
fields.

I We’ll consider only a.T/ D wT C ĸ and b.T/ D uT C v where
w; u; v 2 Fq.

I Compute the norm of these elements in the two function fields,
keeping elements whose norms are smooth (i.e., whose norms are
linear polynomials).

I We heuristically assume that these elements “act” like random
independent polynomials in the two function fields.

I Due to our choice of fĸ and fĹ our smooth elements are a very
special form; there is a u 2 Fq so that:

our smooth elements on the linear side are of the form T C u.
our smooth elements on the non-linear side are of the form TC g.u/.

I If we assume that this process produces random looking
polynomials this occurs with probability better than
ĸ=..dĸ C ĸ/Š � .dĹ C ĸ/Š/.

I Sieving occurs in Lqn.ĸ=ĺ/.
Ĺŀ / ļļ

Linear Algebra

I Our relations can be transformed into linear equations involving:
logarithms of polynomials on the linear side.
logarithms of (principal) ideals on the other side.

I The actual linear algebra occurs as before.

ĺķ / ļļ

And then...

I Sadly, logarithms of degree ĸ polynomials aren’t sufficient.
I “Large” elements must be presented as a product of these linear

terms.
I This uses a technique called “special-q descent”.

We want the logarithm of y.
Build yiT j until we find an element that can be factored into
polynomials of degree < �

p
n. Let q be one such polynomial. (� is a

parameter chosen so that � 2 .ĸ=Ĺ; ĸ/).
Sieve polynomials of the form a.T/X � b.T/ where
deg a.T/;deg b.T/ � �

p
n.

Look for elements whose factors are of degree strictly smaller that
deg q.
Wash, rinse, repeat.
Backtrack once we have descended to degree ĸ.

ĺĸ / ļļ

A Computational Example Problem

Due to [Joux, ĹķķĽ]:
I p D ĺľķĿķĸ, our field is Fpĺķ, a ļļĽ-bit cardinality, with

multiplicative group of cardinality ĸĸĻ bits.
I Here q D p.

ĺĹ / ļļ

FFS Computing Time

I ĺĹŀķĿĹ relations generated in Ļļ core-minutes.
I Removing singletons and cliques gives us ĸļķĹľķ equations in

ĸĻĿĹľķ unknowns.
I Processing via the Lanczos algorithm in about Ŀķ core-hours.
I Special-q descent took Ļķ core-minutes.

ĺĺ / ļļ

Subsection ĺ

Joux’s Index Calculus Algorithm ĸ: Pinpointing

ĺĻ / ļļ

Down with the Sieve!

I Any level of processing on bad candidates is wasted time.
I From a complexity view for the sieving stage, we care not just

about the number of successful candidates, but the total number
tested.

I For fields with a “medium size” subfield we can use “pinpointing”.
I We otherwise use the prior FFS algorithm.

ĺļ / ļļ

Pinpointing

I Construct X D Ydĸ and Y D gĹ.X/, where gĹ is degree dĹ.
I After normalization, we consider candidates of a certain form,

where a; b; c 2 Fq:

YdĸCĸ
C aYdĸ C bY C c D XgĹ.X/ C aX C bgĹ.X/ C c

I This yields a relation when both sides factor into linear
polynomials.

ĺĽ / ļļ

One-Sided Pinpointing

I Look for polynomials of a form that will split on the left hand side
by picking B; C 2 Fq:

UdĸCĸ
C Udĸ C BU C C

I This will require approximately .dĸ C ĸ/Š candidates.
I Once one is found, we can amplify it by performing the change of

variable U D Y=a, with a 2 F�
q .

I The amortized cost of these relations is much better than the cost
of sieving.

ĺľ / ļļ

Advanced Pinpointing

I A similar procedure over some fields (e.g., Kummer Extensions)
allows us to perform similar tricks on both sides.

I This decreases the amortized cost even more.
I The ĸĻĹļ-bit discrete logarithm problem mentioned previously

uses this approach.

ĺĿ / ļļ

Subsection Ļ

Joux’s Index Calculus Algorithm Ĺ: Relations from Perturbed
Functions

ĺŀ / ļļ

Formal Place Setting (Look! A Shrimp Fork!)

I Specified as applying to fields of the form FqĹk where q � k.
I The characteristic of FqĹk is required to be very small (ideally fixed!)
I In pinpointing we amplified a single equation to a class of

equations through a linear change of variables.
I This approach notes that if we broaden our transforms, we can rely

on a single polynomial for all relations.

Ļķ / ļļ

Who is that masked man?

I We transform using a Möbius transform!

x 7!
ax C b
cx C d

I Multiply by the denominator in the appropriate degree to get a
polynomial.

f.x/ 7! Fa;b;c;d.x/ D .cx C d/deg ff
�
ax C b
cx C d

�
I In the case that f splits into monic irreducible factors, it induces a

factorization of Fa;b;c;d:

f.Y/ D

kY
iDĸ

Fi.Y/ei Fa;b;c;d.x/
kY

iDĸ

�
.cx C d/deg FiFi

�
ax C b
cx C d

��ei

Ļĸ / ļļ

Wherein an Old College Friend Returns

I Every single f produces qĺ canidates.
I What should we choose for f?
I f.x/ D xq � x splits by design.

ĻĹ / ļļ

The Butler!

I Consider FqĹk as an extension over FqĹ, where k � q C ı (ı small
compared to q).

I Take hķ.X/; hĸ.X/ 2 FqĹ ŒX� so that hĸ.X/Xq � hķ.X/ has an irreducible
factor I.X/ of degree k.

I It is (heuristically) likely that we can find linear hi.X/ that satisfy this
requirement.

I We then view FqĹk Š FqĹ ŒX�=.I.X//.

Ļĺ / ļļ

Sorry about this, but...

I Start with: Y
˛2Fq

.Y � ˛/ D Yq � Y.

I Apply the above change of variable to Y (with a; b; c; d 2 FqĹ and
ad � bc ¤ ķ)

.cX C d/
Y

˛2Fq

..a � ˛c/X C .b � ˛d// (ĸ)

D .cX C d/.aX C b/q � .aX C b/.cX C d/q (Ĺ)

ĻĻ / ļļ

It gets better!

I Evaluate (Ĺ).

.caq � acq/Xhķ.X/ C � � � C .dbq � bdq/hĸ.X/

hĸ.X/
.mod I.X//

I If we add hĸ.X/ to our smoothness base, we get a relation
whenever the numerator splits into linear factors.

I These will not all be distinct (indeed, this is why we operate over
FqĹ and not Fq.

I We expect to find enough relations after O.pĹ/ quadruples.
I Linear algebra then gives us the logs of the degree one terms.

I In essentially polynomial time...

Ļļ / ļļ

It gets better!

I Evaluate (Ĺ).

.caq � acq/Xhķ.X/ C � � � C .dbq � bdq/hĸ.X/

hĸ.X/
.mod I.X//

I If we add hĸ.X/ to our smoothness base, we get a relation
whenever the numerator splits into linear factors.

I These will not all be distinct (indeed, this is why we operate over
FqĹ and not Fq.

I We expect to find enough relations after O.pĹ/ quadruples.
I Linear algebra then gives us the logs of the degree one terms.
I In essentially polynomial time...

ĻĽ / ļļ

Stepping Back from the Brink

I We really can’t just proceed with logs of degree Ĺ terms, but we
needn’t calculate all such logs.

I Lazy evaluation in the descent stage has produced the best
performance.

Ļľ / ļļ

The Descent: Prior to the Monsters

I First, spend some time calculating git until it decomposes into
“reasonably low” degree.

I With fixed characteristic fields, we can fix one of the coefficients
used in special-q descent.

I We use this “classical” special-q descent for early descent, and
then pass to a new descent algorithm.

ĻĿ / ļļ

The Descent: She’s Clearly Insane

I Given a polynomial Q of degree D find pairs of polynomials, kĸ; kĹ of
degree d D d.D C ĸ/eĹ so that Q.X/ divides kĸ.x/qkĹ.x/ � kĸ.x/kĹ.x/q

.mod I.X//.
I With good probability, we obtain a relation between Q and

polynomials of at most d.
I This is a bilinear system!
I We can search for such kĸ, kĹ using a Gröbner basis algorithm.
I If D is “large”, we should instead find kĸ of degree d and kĹ of

degree D C ĸ � d.

Ļŀ / ļļ

The Final Algorithm

I Use the special q-descent to degree
p
q and then the new descent

algorithm after that.
I This results in complexity L.ĸ=Ļ C o.ĸ//.

ļķ / ļļ

Section ĺ

Conclusion, Mk. II

ļĸ / ļļ

Today’s Conclusion

“The understanding of the hardness of the DLP in the
multiplicative group of finite extension fields could be said to be
undergoing a mini-revolution.” — From GGMZ “Solving a
ĽĸĹķ-bit DLP on a Desktop Computer”

I Solving Discrete Logarithm Problems is Hard.

ļĹ / ļļ

Today’s Conclusion

“The understanding of the hardness of the DLP in the
multiplicative group of finite extension fields could be said to be
undergoing a mini-revolution.” — From GGMZ “Solving a
ĽĸĹķ-bit DLP on a Desktop Computer”

I Solving Discrete Logarithm Problems is Hard.
I But not as hard as it used to be in some settings...

ļĺ / ļļ

That’s All Folks!

Thank You!

ļĻ / ļļ

Colophon

I The principal font is Evert Bloemsma’s ĹķķĻ humanist san-serif
font Legato. This font is designed to be exquisitely readable, and
is a significant departure from the highly geometric forms that
dominate most san-serif fonts. Legato was Evert Bloemsma’s final
font prior to his untimely death at the age of ĻĽ.

I Math symbols from the MathTime Professional II (MTProĹ) fonts, a
font package released in ĹķķĽ by the great mathematical expositor
Michael Spivak.

I The URLs are typeset in Luc(as) de Groot’s Ĺķķļ Consolas, a
monospace font with excellent readability.

ļļ / ļļ

	Introduction
	From Part I
	The Current State of Affairs

	Modern Approaches to the Discrete Logarithm Problem
	The Number Field Sieve
	The Function Field Sieve
	Joux's Index Calculus Algorithm 1: Pinpointing
	Joux's Index Calculus Algorithm 2: Relations from Perturbed Functions

	Conclusion, Mk. II

