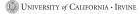
Joux's Recent Index Calculus Results Part II: The Function Field Sieve and Joux's Improvements

Joshua E. Hill

Department of Mathematics, University of California, Irvine

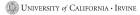
Cryptography Seminar June 4, 2013 http://bit.ly/129p1If

v1.0



1 Introduction

- 2 Modern Approaches to the Discrete Logarithm Problem
- 3 Conclusion, Mk. II

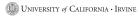


1 Introduction

- From Part I
- The Current State of Affairs

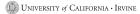
2 Modern Approaches to the Discrete Logarithm Problem

3 Conclusion, Mk. II



Subsection 1

From Part I

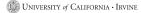


Definition

Given a finite group G (written multiplicatively), and a generator $g \in G$, given $t = g^{\ell}$ for some $\ell \in \mathbb{Z}$, calculate ℓ . This is called the discrete logarithm, and is denoted $\log_q (t) = \ell$.

Definition

$$L_n(\alpha, c) = \exp\left((c + o(1)) \left(\log n\right)^{\alpha} \left(\log \log n\right)^{1-\alpha}\right)$$



- The Discrete Logarithm Problem in groups with composite order can be decomposed.
- Solving Discrete Logarithm Problems is Hard.
- There are a set of algorithms that are deterministic
 - Brute Force runs in O(n) and requires little storage.
 - Baby Step, Giant Step runs in $O(\sqrt{n})$ and requires $O(\sqrt{n})$ storage.
- There are more powerful algorithms that are probabilistic
 - Pollard's ρ -method runs (heuristically, probabilistically) in $O(\sqrt{n})$ and requires little storage.
 - Index Calculus for problems in \mathbb{F}_p runs (probabilistically) in

$$L_{p}\left(1/2,\sqrt{2}\right)$$

Subsection 2

The Current State of Affairs

\mathbb{F}_q	Algorithm	Complexity	Field Size	Comp. Size	Year
\mathbb{F}_{p}	NFS ¹	L _p [1/3]	530-bit	8.65 CY	2007
\mathbb{F}_{2^p}	FFS ²	$L_{q}[1/3]$	613-bit	2.5 CY	2005
\mathbb{F}_{p^n}	FFS ³	$L_{q}[1/3]$	556-bit	0.001 CY	2005

¹[Joux-Lercer 2002] ²[Adleman 1994] ³[Joux 2006]

\mathbb{F}_q	Algorithm	Complexity	Field Size	Comp. Size	Year
\mathbb{F}_{p}	NFS	<i>L</i> _p [1/3]	530-bit	8.65 CY	2007
\mathbb{F}_{2^p}	FFS	L_{q} [1/3]	613-bit	2.5 CY	2005
\mathbb{F}_{p^n}	FFS	<i>L</i> _q [1/3]	556-bit	0.001 CY	2005
\mathbb{F}_{p^n}	JIC1⁴	<i>L</i> _q [1/3]	1425-bit	0.06 CY	Jan 2013

⁴[Joux, "Faster Index Calculus for the Medium Prime Case..."]

\mathbb{F}_q	Algorithm	Complexity	Field Size	Comp. Size	Year
\mathbb{F}_{p}	NFS	<i>L</i> _p [1/3]	530-bit	8.65 CY	2007
\mathbb{F}_{2^p}	FFS	$L_{q}[1/3]$	613-bit	2.5 CY	2005
\mathbb{F}_{2^n}	FFS⁵	$L_{q}[1/3]$	1971-bit	0.26 CY	Feb 2013
\mathbb{F}_{2^n}	JIC26	$L_q \left[\frac{1}{4} + o(1) \right]$	1178-bit	0.02 CY	Feb 2013
\mathbb{F}_{p^n}	FFS	$L_q [1/3]$	556-bit	0.001 CY	2005
\mathbb{F}_{p^n}	JIC1	L _q [1/3]	1425-bit	0.06 CY	Jan 2013

⁵[Göloğlu, Granger, McGuire, Zumbrägel] ⁶[Joux, "A new index calculus algorithm..."]

\mathbb{F}_q	Algorithm	Complexity	Field Size	Comp. Size	Year
\mathbb{F}_p	NFS	L _p [1/3]	530-bit	8.65 CY	2007
\mathbb{F}_{2^p}	FFS	L_{q} [1/3]	613-bit	2.5 CY	2005
\mathbb{F}_{2^n}	FFS	$L_{q}[1/3]$	1971-bit	0.26 CY	Feb 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	1178-bit	0.02 CY	Feb 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	4080-bit	1.61 CY	Mar 2013
\mathbb{F}_{p^n}	FFS	$L_q [1/3]$	556-bit	0.001 CY	2005
\mathbb{F}_{p^n}	JIC1	<i>L</i> _q [1/3]	1425-bit	0.06 CY	Jan 2013

\mathbb{F}_q	Algorithm	Complexity	Field Size	Comp. Size	Year
\mathbb{F}_{p}	NFS	<i>L</i> _p [1/3]	530-bit	8.65 CY	2007
\mathbb{F}_{2^p}	FFS	$L_{q}[1/3]$	613-bit	2.5 CY	2005
\mathbb{F}_{2^p}	FFS	$L_{q}[1/3]$	809-bit	4200 CY	Apr 2013
\mathbb{F}_{2^n}	FFS	$L_{q}[1/3]$	1971-bit	0.26 CY	Feb 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	1178-bit	0.02 CY	Feb 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	4080-bit	1.61 CY	Mar 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	6120-bit	0.09 CY	Apr 2013
\mathbb{F}_{p^n}	FFS	$L_q [1/3]$	556-bit	0.001 CY	2005
\mathbb{F}_{p^n}	JIC1	$L_{q}[1/3]$	1425-bit	0.06 CY	Jan 2013

\mathbb{F}_q	Algorithm	Complexity	Field Size	Comp. Size	Year
\mathbb{F}_{p}	NFS	L _p [1/3]	530-bit	8.65 CY	2007
\mathbb{F}_{2^p}	FFS	$L_{q}[1/3]$	613-bit	2.5 CY	2005
\mathbb{F}_{2^p}	FFS	$L_{q}[1/3]$	809-bit	4200 CY	Apr 2013
\mathbb{F}_{2^n}	FFS	$L_{q}[1/3]$	1971-bit	0.26 CY	Feb 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	1178-bit	0.02 CY	Feb 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	4080-bit	1.61 CY	Mar 2013
\mathbb{F}_{2^n}	JIC2	$L_q [1/4 + o(1)]$	6120-bit	0.09 CY	Apr 2013
\mathbb{F}_{2^n}	JIC2	$L_q \left[1/4 + o(1) \right]$	6168-bit	0.06 CY	May 2013
\mathbb{F}_{p^n}	FFS	<i>L</i> _q [1/3]	556-bit	0.001 CY	2005
\mathbb{F}_{p^n}	JIC1	<i>L</i> _q [1/3]	1425-bit	0.06 CY	Jan 2013

1 Introduction

- 2 Modern Approaches to the Discrete Logarithm Problem
 - The Number Field Sieve
 - The Function Field Sieve
 - Joux's Index Calculus Algorithm 1: Pinpointing
 - Joux's Index Calculus Algorithm 2: Relations from Perturbed Functions

3 Conclusion, Mk. II

Subsection 1

The Number Field Sieve

16 / 55

The Number Field Sieve is a descendent of the Quadratic Sieve:

- ► To factor a number *n* find *x*, *y* so that $x^2 \equiv y^2 \pmod{n}$ non-trivially.
- ► We then have that gcd(x y, n) and gcd(x + y, n) are non-trivial factors of n.
- The way we generate such x and y is different than the Quadratic Sieve.

- Preliminary Step I: Establish a Ring and Homomorphism and a Smoothness Base
 - We proceed by working over two rings, $\mathbb{Z}/n\mathbb{Z}$ and a number field.
 - Select a smoothness bound B (over the number field, the bound is on the absolute norm of the element).
 - Our smoothness base is comprised of the k primes satisfying our smoothness bound.
- Run Collection Phase: Find Relations
 - Sieve on both sides, looking for relations (parity of the exponent of each term of the smoothness base expressed as elements of
 \$\mathbb{F}_2^k\$).
- Solve the resulting linear system
 - Once we have sufficient relations, we can use linear algebra to find elements that can be multiplied together to be squares.
- Post processing
 - Calculate square roots.
 - Map this square root to the integers via the ambient homomorphism.
 - Calculate factors using gcd.

💭 UNIVERSITY of CALIFORNIA • IRVINE

NFS for Logarithms: Preliminaries I

Specializing for \mathbb{F}_p , p > 5:

- Let *I* be an odd prime divisor of p-1
 - Note: we must be able to factor p 1.
- ▶ Let *B* be our smoothness bound and treat $a \in \mathbb{F}_p$ as *B*-smooth if $a \in \mathbb{Z}$ is *B*-smooth.
- Let $g \in \mathbb{F}_p^{\times}$ and $t \in \langle g \rangle$, both *B*-smooth.
 - We have already seen how to proceed if *t* is not *B*-smooth.
- ▶ We choose *R*₁ and *R*₂ as either:
 - A number field and the integers (for logarithms in \mathbb{F}_p).
 - Two number fields (in this case, we still call the algorithm "The Number Field Sieve").
 - Two function fields (in this case, we then call the algorithm "The Function Field Sieve")

- ▶ We need the rings R_i to come with (easy to find) homomorphisms from $\phi_i : R_i \to \mathbb{F}_p$.
- ▶ We construct *l*th powers, $\alpha_i \in R_i$ so that $\phi_1(\alpha_1) = \phi_2(\alpha_2)$.
- We then have $\ell_l \equiv -\log_q t \pmod{l}$.
- ► Once we know ℓ_l for all values l dividing p 1, we can calculate ℓ via the CRT.

Rings and Things you Sing About

- Choose a parameter d so that $\log_2 p > d \ge 1$.
- ► Take $m = \lfloor \sqrt[d]{p} \rfloor$ and construct the base-*m* representation of *p* with *m*-ary digits a_i :

$$p=\sum_{i=0}^d a_i m^i$$

- Take $f(x) = \sum_{i=0}^{d} a_i x^i$. This is irreducible over \mathbb{Q} .
- Let α denote a root of f in $\overline{\mathbb{Q}}$ and take $R_1 = \mathbb{Z}$ and $R_2 = \mathbb{Z}[\alpha]$.
- The map ϕ_1 is just reduction mod p.
- The map ϕ_2 is the map sending the monomial $b_i \alpha^i \mapsto b_i m^i$ (mod p), respecting addition.

- This proceeds in the same way as with the GNFS (factoring) algorithm.
- Produces factorizations of the sieved *B*-smooth elements in our respective rings.
- ▶ Operates elements of the form $(a bm) \in R_1$ and $(a b\alpha) \in R_2$.
- Heuristic performance: $L_p(1/3)$ pairs must be tested.

- This seems like a job for... Gaussian Elimination!
- Sadly our old friend is $O(r^3)$, which would ruin our bound.
- We use some combination of the Block Wiedmann algorithm, the Lanczos algorithm, and structured Gaussian Elimination.
- Results in (probable) *l*th powers, which we use to solve the logarithm.

Due to [Kleinjung, 2007]:

- ▶ *p* was chosen as a 532-bit prime so that (p-1)/2 is prime (based on a scaled value of π).
- g = 2 is chosen (and generates \mathbb{F}_p^{\times}).
- An arbitrary target *t* is chosen (based on a scaled value of *e*).

- ▶ 831266637 relations generated in 6.6 core-years.
- Duplicates are discarded, resulting in 423671492 relations.
- Removing singletons and cliques, gives us a 2177226 × 2177026 matrix with 289976350 non-zero entries.
- Processing via the Block Wiedemann algorithm in about 28 core-years.
- Post processing was accomplished in a few hours.

Subsection 2

The Function Field Sieve

26/55

- Working in \mathbb{F}_{q^n} with $q = p^k$.
- ► As a field, this is obviously $\mathbb{F}_{p^{kn}}$, but it suits us to tune the extension degree.
- Our smoothness bases are ideals whose norms are polynomials of small degree.
- ► In certain cases (when $\log q$ and $\sqrt{n} \log n$ have the right relation) our smoothness bases are ideals whose norms are degree 1 polynomials.

Rings and Things you Sing About... Still

- Choose parameters d_1 , d_2 minimally so that $d_2 = d_1$ or $d_2 = d_1 + 1$, and $d_1d_2 > n$.
- ► Choose $g_1(x)$ of degree d_1 and $g_2(x)$ of degree d_2 in $\mathbb{F}_q[x]$ so that $g_2(g_1(T)) + T$ has an irreducible degree *n* factor over \mathbb{F}_q , F(T).
- We then have

$$\mathbb{F}_{q^n} \cong \mathbb{F}_q[T] / \langle F(T) \rangle$$

Define

$$f_1(X, T) = X - g_1(T)$$
 and $f_2(X, T) = g_2(X) + T$

- f_1 and f_2 have a common root $X = g_1(T)$.
- We use these polynomials to define our function fields.

Sieving

- We examine elements of the form a(T)X b(T) in the two function fields.
- ▶ We'll consider only a(T) = wT + 1 and b(T) = uT + v where $w, u, v \in \mathbb{F}_q$.
- Compute the norm of these elements in the two function fields, keeping elements whose norms are smooth (i.e., whose norms are linear polynomials).
- We heuristically assume that these elements "act" like random independent polynomials in the two function fields.
- ▶ Due to our choice of f_1 and f_2 our smooth elements are a very special form; there is a $u \in \mathbb{F}_q$ so that:
 - our smooth elements on the linear side are of the form T + u.
 - our smooth elements on the non-linear side are of the form T + g(u).
- If we assume that this process produces random looking polynomials this occurs with probability better than 1/((d₁ + 1)! · (d₂ + 1)!).
- Sieving occurs in $L_{q^n}(1/3)$.

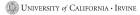
💭 UNIVERSITY of CALIFORNIA • IRVINE

- Our relations can be transformed into linear equations involving:
 - logarithms of polynomials on the linear side.
 - logarithms of (principal) ideals on the other side.
- The actual linear algebra occurs as before.

- Sadly, logarithms of degree 1 polynomials aren't sufficient.
- "Large" elements must be presented as a product of these linear terms.
- This uses a technique called "special-q descent".
 - We want the logarithm of *y*.
 - Build $y^i T^j$ until we find an element that can be factored into polynomials of degree $< \mu \sqrt{n}$. Let q be one such polynomial. (μ is a parameter chosen so that $\mu \in (1/2, 1)$).
 - Sieve polynomials of the form a(T)X b(T) where deg a(T), deg $b(T) \le \mu \sqrt{n}$.
 - Look for elements whose factors are of degree strictly smaller that deg q.
 - Wash, rinse, repeat.
 - Backtrack once we have descended to degree 1.

Due to [Joux, 2006]:

- ▶ p = 370801, our field is $\mathbb{F}_{p^{30}}$, a 556-bit cardinality, with multiplicative group of cardinality 114 bits.
- Here q = p.



- ► 329082 relations generated in 45 core-minutes.
- Removing singletons and cliques gives us 150270 equations in 148270 unknowns.
- Processing via the Lanczos algorithm in about 80 core-hours.
- Special-q descent took 40 core-minutes.

Subsection 3

Joux's Index Calculus Algorithm 1: Pinpointing

34/55

- Any level of processing on bad candidates is wasted time.
- From a complexity view for the sieving stage, we care not just about the number of successful candidates, but the total number tested.
- ► For fields with a "medium size" subfield we can use "pinpointing".
- ▶ We otherwise use the prior FFS algorithm.

- Construct $X = Y^{d_1}$ and $Y = g_2(X)$, where g_2 is degree d_2 .
- After normalization, we consider candidates of a certain form, where $a, b, c \in \mathbb{F}_q$:

$$Y^{d_1+1} + aY^{d_1} + bY + c = Xg_2(X) + aX + bg_2(X) + c$$

This yields a relation when both sides factor into linear polynomials.

► Look for polynomials of a form that will split on the left hand side by picking $B, C \in \mathbb{F}_q$:

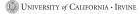
$$U^{d_1+1}+U^{d_1}+BU+C$$

- This will require approximately $(d_1 + 1)!$ candidates.
- Once one is found, we can amplify it by performing the change of variable U = Y/a, with $a \in \mathbb{F}_a^{\times}$.
- The amortized cost of these relations is much better than the cost of sieving.

- A similar procedure over some fields (*e.g.*, Kummer Extensions) allows us to perform similar tricks on both sides.
- This decreases the amortized cost even more.
- The 1425-bit discrete logarithm problem mentioned previously uses this approach.

Subsection 4

Joux's Index Calculus Algorithm 2: Relations from Perturbed Functions



- ► Specified as applying to fields of the form $\mathbb{F}_{q^{2k}}$ where $q \approx k$.
- The characteristic of $\mathbb{F}_{q^{2k}}$ is required to be very small (ideally fixed!)
- In *pinpointing* we amplified a single equation to a class of equations through a linear change of variables.
- This approach notes that if we broaden our transforms, we can rely on a single polynomial for all relations.

We transform using a Möbius transform!

$$x\mapsto \frac{ax+b}{cx+d}$$

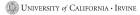
Multiply by the denominator in the appropriate degree to get a polynomial.

$$f(x) \mapsto F_{a,b,c,d}(x) = (cx+d)^{\deg f} f\left(\frac{ax+b}{cx+d}\right)$$

In the case that f splits into monic irreducible factors, it induces a factorization of F_{a,b,c,d}:

$$f(Y) = \prod_{i=1}^{k} F_i(Y)^{e_i} \rightsquigarrow F_{a,b,c,d}(X) \prod_{i=1}^{k} \left((cx+d)^{\deg F_i} F_i\left(\frac{ax+b}{cx+d}\right) \right)^{e_i}$$

- Every single f produces q^3 canidates.
- ▶ What should we choose for *f*?
- $f(x) = x^q x$ splits by design.



- Consider $\mathbb{F}_{q^{2k}}$ as an extension over \mathbb{F}_{q^2} , where $k \leq q + \delta$ (δ small compared to q).
- ► Take $h_0(X)$, $h_1(X) \in \mathbb{F}_{q^2}[X]$ so that $h_1(X)X^q h_0(X)$ has an irreducible factor I(X) of degree k.
- It is (heuristically) likely that we can find linear h_i(X) that satisfy this requirement.
- We then view $\mathbb{F}_{q^{2k}} \cong \mathbb{F}_{q^2}[X]/(I(X))$.

Start with:

$$\prod_{\alpha\in\mathbb{F}_q}(Y-\alpha)=Y^q-Y.$$

▶ Apply the above change of variable to *Y* (with *a*, *b*, *c*, *d* ∈ \mathbb{F}_{q^2} and $ad - bc \neq 0$)

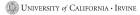
$$(cX + d) \prod_{\alpha \in \mathbb{F}_q} ((a - \alpha c)X + (b - \alpha d))$$
(1)
= $(cX + d)(aX + b)^q - (aX + b)(cX + d)^q$ (2)

UNIVERSITY of CALIFORNIA · IRVINE

Evaluate (2).

$$\frac{(ca^q - ac^q)Xh_0(X) + \dots + (db^q - bd^q)h_1(X)}{h_1(X)} \pmod{I(X)}$$

- ▶ If we add $h_1(X)$ to our smoothness base, we get a relation whenever the numerator splits into linear factors.
- These will not all be distinct (indeed, this is why we operate over \mathbb{F}_{q^2} and not \mathbb{F}_q .
- We expect to find enough relations after $O(p^2)$ quadruples.
- Linear algebra then gives us the logs of the degree one terms.



Evaluate (2).

$$\frac{(ca^q - ac^q)Xh_0(X) + \dots + (db^q - bd^q)h_1(X)}{h_1(X)} \pmod{I(X)}$$

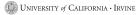
- ▶ If we add $h_1(X)$ to our smoothness base, we get a relation whenever the numerator splits into linear factors.
- These will not all be distinct (indeed, this is why we operate over \mathbb{F}_{q^2} and not \mathbb{F}_q .
- We expect to find enough relations after $O(p^2)$ quadruples.
- Linear algebra then gives us the logs of the degree one terms.
- In essentially polynomial time...

- We really can't just proceed with logs of degree 2 terms, but we needn't calculate all such logs.
- Lazy evaluation in the descent stage has produced the best performance.

- First, spend some time calculating gⁱt until it decomposes into "reasonably low" degree.
- With fixed characteristic fields, we can fix one of the coefficients used in special-q descent.
- We use this "classical" special-q descent for early descent, and then pass to a new descent algorithm.

- Given a polynomial Q of degree D find pairs of polynomials, k₁, k₂ of degree d = ⌈(D + 1)⌉ 2 so that Q(X) divides k₁(x)^qk₂(x) − k₁(x)k₂(x)^q (mod I(X)).
- With good probability, we obtain a relation between Q and polynomials of at most d.
- This is a bilinear system!
- We can search for such k_1 , k_2 using a Gröbner basis algorithm.
- ▶ If *D* is "large", we should instead find k_1 of degree *d* and k_2 of degree D + 1 d.

- Use the special q-descent to degree \sqrt{q} and then the new descent algorithm after that.
- This results in complexity L(1/4 + o(1)).



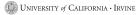
Section 3

Conclusion, Mk. II

51/55

"The understanding of the hardness of the DLP in the multiplicative group of finite extension fields could be said to be undergoing a mini-revolution." — From GGMZ "Solving a 6120-bit DLP on a Desktop Computer"

Solving Discrete Logarithm Problems is Hard.



"The understanding of the hardness of the DLP in the multiplicative group of finite extension fields could be said to be undergoing a mini-revolution." — From GGMZ "Solving a 6120-bit DLP on a Desktop Computer"

- Solving Discrete Logarithm Problems is Hard.
- But not as hard as it used to be in some settings...

Thank You!

54/55

- The principal font is Evert Bloemsma's 2004 humanist san-serif font Legato. This font is designed to be exquisitely readable, and is a significant departure from the highly geometric forms that dominate most san-serif fonts. Legato was Evert Bloemsma's final font prior to his untimely death at the age of 46.
- Math symbols from the MathTime Professional II (MTPro2) fonts, a font package released in 2006 by the great mathematical expositor Michael Spivak.
- The URLs are typeset in Luc(as) de Groot's 2005 Consolas, a monospace font with excellent readability.

