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Subsection 1

The Discrete Log Problem
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Discrete and Discreet

.
Definition..

......

Given a finite group G (written multiplicatively), and a generator g 2 G,
given t D g` for some ` 2 Z, calculate `. This is called the discrete
logarithm, and is denoted logg .t/ D `.

I The difficulty of performing discrete logs is the foundational
hardness assumption for much of cryptography (e.g.,
Diffie-Hellman and its variants, El Gamal and its variants).
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Running With the Wrong Group

I The difficulty of this problem is profoundly dependent on the
underlying group.

I All finite cyclic groups are (group-)isomorphic to Z=nZ (under
addition), where n D jgj.

I If we can use the (group-)isomorphism induced by g 7! 1, the
problem becomes trivial.
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Jets vs. Sharks

.
Example (Multiplicative)
..

......

.Z=107Z/� is a cyclic group of order 106, which has subgroups of order
1;2;53; 106. The element g D 3 clearly doesn’t have order 1 or 2, but
353 � 1 .mod 107/, so g generates a group of order 53. It is not clear
how to efficiently calculate log3.19/.

l

.
Example (Additive)
..

......
Z=106Z is a cyclic group of order 106. The element g D 2 clearly has
order 53. The corresponding problem is log2.84/ D 42.

Solving the discrete log problem for every value in the cyclic subgroup
completely describes this isomorphism.
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Subsection 2

Time Complexity Notes
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Big-O Notation (and Family)

I We have two eventually positive real valued functions
A; B W Nk ! R. Take x as an n-tuple, with x D .x1; : : : ; xn/

I We’ll write jxjmin D mini xi.

.
Definition..

......

A.x/ D O.B.x// if there exists a positive real constant C and an integer N
so that if jxjmin > N then A.x/ � CB.x/. (i.e. A is bounded above by B
asymptotically.)

.
Definition..

......

A.x/ D o.B.x// if for all positive real constants C there is an integer N so
that if jxjmin > N then A.x/ � CB.x/. (i.e. A is dominated by B
asymptotically.)
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“When I Use a Word...”

.
Definition..

......
An algorithm is considered polynomial time if it is time complexity
O.xk/ where k is a fixed positive integer and x is the input length.

.
Definition..

......

An algorithm is considered exponential time if it is time complexity
O.2x

k
/ where k is a fixed positive integer, and x is the input length.

.
Definition..

......
An algorithm is considered sub-exponential time if it is time complexity
2o.x/ where x is the input length.
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“It Means Just What I Choose it to Mean”

I These definitions are dependent on the group and its
representation.

I Note that a group of order q takes (on average) at least dlog2.q/e

bits to represent a group element.
I The log function thus takes an input of 2 dlog2.q/e bits.
I For the purposes of this discussion, imagine n � q.
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Subsection 1

Reductions
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First Steps

I The difficulty of performing the discrete log operation is
determined by the size of the cyclic group jgj D # .hgi/ D n and the
group in which it is embedded.

I If n is composite (and can be factored), various reductions are
possible.

I These are collectively often known as “The Pohlig–Hellman
Algorithm”.
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Composite Reduction #1

If n D uv and gcd.u; v/ D 1, we can solve the discrete log by solving
separate discrete logs in a u and v ordered group.

I There are integers a; b so that au C bv D 1.
I jguj D v and jgvj D u.
I If we knew loggu .tu/ D `u and loggv .tv/ D `v, then

t D tauCbv
D gu`uagv`vb D gu`uaCv`vb
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Composite Reduction #2

If n D pa then we can solve by performing a logs in an order p group.
I We seek to calculate ` D logg .t/.

I We can represent ` base p as ` D
Pa�1

jD0 bjp
j (where 0 � bi < p)

I We can solve for each bj in succession by performing a calculation
in a group of order p:

We can solve for b0 as tp
a�1

D g`pa�1
D gb0pa�1

D

�
gpa�1

�b0
.

To solve for bj, if we know b0 to bj�1, and let tj D tg�b0�b1p�:::�bj�1pj�1,

so then ta�j�1
j is in

D
gpa�1

E
, so we can solve loggpa�1

�
tp

a�j�1

j

�
.
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Reduction Summary

I We can reduce problems of finding logarithms on groups with
composite order to (possibly much easier) subproblems.

I This isn’t desirable for cryptography, so almost all cryptographic
settings require that g generates either:

a very large prime ordered group, or
a very large group whose order is impractical to factor.

I We can restrict our discussion to groups of prime order.
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Subsection 2

Exponential Computational Approaches

19 / 71



Pick Your Poison: Exhaustion

Deterministic Approaches
I Brute force, requires on average n=2 group operations (time

complexity is O.n/ group operations), negligible storage.
.
Example
..

......

In .Z=107Z/�, calculate log3.19/.

j 0 1 2 � � �

41 42

3j

1 3 9 � � � 42
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Pick Your Poison: Exhaustion

Deterministic Approaches
I Brute force, requires on average n=2 group operations (time
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Pick Your Poison: Exhaustion

Deterministic Approaches
I Brute force, requires on average n=2 group operations (time

complexity is O.n/ group operations), negligible storage.
.
Example
..

......

In .Z=107Z/�, calculate log3.19/.

j 0 1 2 � � � 41 42

3j 1 3 9 � � � 42 19

26 / 71



Pick Your Poison: Drowning

I The Baby Steps, Giant Steps algorithm [Shanks, 1971]
We seek to calculate ` D logg .t/.
If we let m D

˙p
n
�
, we can write ` in base m as ` D b0 C b1m (with

0 � bi < m) . We then see g` D gb0Cb1m D t, so g�b1mt D gb0.
Calculate the list

˚
g0; : : : ; gm�1

	
, add them to a hash table, and then

step through the (at most) m calculations (j 2 f0; 1; : : : ;m � 1g) for
g�jmt until a collision is found. O

�p
n
�
group operations and storage.
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First, Find a Nice Lake

.
Example
..

......

In .Z=107Z/�, calculate log3.19/; we thus have m D

lp
53

m
D 8. First,

calculate the Baby Steps:

j 0 1 2 3 4 5 6 7

3j 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7

3�8j � 19

19 10 101 25 92

` D 5 � 8 C 2 D 42

28 / 71



First, Find a Nice Lake

.
Example
..

......

In .Z=107Z/�, calculate log3.19/; we thus have m D

lp
53

m
D 8. First,

calculate the Baby Steps:

j 0 1 2 3 4 5 6 7

3j 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7

3�8j � 19 19

10 101 25 92

` D 5 � 8 C 2 D 42

29 / 71



First, Find a Nice Lake

.
Example
..

......

In .Z=107Z/�, calculate log3.19/; we thus have m D
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First, Find a Nice Lake

.
Example
..

......

In .Z=107Z/�, calculate log3.19/; we thus have m D

lp
53

m
D 8. First,

calculate the Baby Steps:

j 0 1 2 3 4 5 6 7
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Now calculate the Giant Steps:
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“Your Friend Here is Only Mostly Dead!”

Probabilistic Approaches:
I Pollard’s �-method [Pollard 1978] to calculate ` D logg .t/.

Attempt to find an ai; Oai; bi; Obi 2 Z=nZ so that gaitbi D gOait Obi.
` is then a solution to

�
Obi � bi

�
` �

�
ai � Oai

�
.mod n/.

Pseudo-randomly explore the group using an iterated function
xi D f .xi�1/ defined so that xi D gaitbi; start at x0 D 1 D g0t0.
We hope to encounter a cycle.
Cycle detection using Floyd’s cycle detection algorithm.
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“I’m as Mad as Hell...”

I Some notes on Pollard’s �-method:
Encountering a cycle with a random map is expected to occur afterq

�n
2 steps.

We heuristically assume that our function has this same behavior.
The expected time complexity is then O

�p
n
�
group operations, with

negligible storage required.
This can fail in the (unlikely) event that the collision is due to ai � Oai
.mod n/ (and thus bi � Obi .mod n/).
This can be abstracted to a parallelizable algorithm by starting each
process at a random index ai and watching for collisions between
processes (Pollard’s �-method).
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“And I’m Not Going to Take This Anymore!”

I Partition hgi into three sets of roughly the same size, S0; S1; S2.
I Define

f.x/ D

8̂<̂
:
tx x 2 S0
x2 x 2 S1
gx x 2 S2

I If we step through as xiC1 D f.xi/ with xi D gaitbi, then we can
examine the exponents:

f.gaitbi/ D

8̂<̂
:
gaitbiC1 gaitbi 2 S0
g2ait2bi gaitbi 2 S1
gaiC1tbi gaitbi 2 S2
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Like the Chase Scene in “The French Connection”

.
Example
..

......
In .Z=107Z/�, calculate log3.19/. Let S0 D f0; 1; : : :35g,
S1 D f36;37; : : :71g, and S2 D f72;73; : : : 106g.
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A Photo Finish!

This gives us:

` � .55 � 10/�1.6 � 24/ � 42 .mod 53/
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A Note on O
�p

n
�

I n D elog n so O
�p

n
�

D O
�
e

1
2 log n

�
is clearly exponential in the size

of n.
I Our assumption that n � q gives us that this is exponential in the

input size.
I All of these computations are with respect to group operations.

The time complexity of performing these operations is highly
dependent on the group, and varies with q (generally, polynomial
in the size of q).
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Subsection 3

Subexponential Computational Approaches
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I don’t like this problem. Let’s change it!

I We first look at the Index Calculus Method [Kraitchik, 1922] and
[Hellman-Reyneri, 1983] .

I We break down the problem into subproblems.
I If we could represent our group as the unit group in a

homomorphic image of Z, then we can leverage some structure
from Z.

I We will seek relations between factorizations of numbers of the
form gr .mod n/.
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That’s SMOOTH!

I If we want relations based on primes found in random integers, we
want to pay attention to the primes that occur most often.

I For randomly selected integers within our bounds, small primes
will occur as factors of these random numbers more often than
large primes.

I We are thus interested in small primes, hence smooth integers.
.
Definition..

......
An integer is B-smooth if its factorization involves only primes less than
or equal to B.
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All Your Factor Base are Belong to Us.

I Let’s assume we are working in G D .Z=pZ/� for some odd prime
p, and hgi D G.

I Establish the smoothness bound B � p.
I Refer to the k primes less than or equal to B as p1; : : : ; pk. These are

called the factor base. By convention, we let p0 D �1.
I Generate gr where r is chosen randomly in Œ0; p � 1�.
I Factor gr. If it is B-smooth, then we have found a relation, namely

gr D
Qk

iD0 p
ei
i . This corresponds to the additive relation

r �

kX
iD0

ei logg.pi/ .mod p � 1/
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Take Off Every ‘Zig’!

I We already know that logg.�1/ D
p�1
2 .

I If we collect k independent relations, then we can use linear
algebra to solve for the values of each of the logg.pi/’s.

I We now have a way of finding the logarithm of any B-smooth
integer; if t is B-smooth, then

logg.t/ �

kX
iD0

ei logg.pi/ .mod p � 1/.

I If t is not B-smooth, we could try to find the logarithm of a related
value...

We randomly search for r so that tgr is B-smooth.
Once we find such an r, we then have:

logg.t/ � �r C

kX
iD0

ei logg.pi/ .mod p � 1/
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Hold on There, Sparky!

I “You just assumed that we could factor integers that look like gr
.mod p/. They could be... large!”

We could just use trial division, as we only care about a particular
small set of primes.
Lenstra’s Elliptic Curve Factoring method is a polynomial time
method for a sufficiently dense set of smooth integers.

I “You just assumed that we could do linear algebra mod .p � 1/,
which I think implies p D 3!”

There are a few options to overcome this problem.
You could couple Hensel-style lifting, and then combine results
using the CRT.
It may also “just work” if you don’t need to invert anything that is a
factor of .p � 1/.
You could also choose your relations specifically so this step “just
works”.
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“Do the Bomb Bay Door Thing.”

As a note, for consistency, we are operating in a subgroup of index 2
here, so some behavior changes.
.
Example
..

......

In .Z=107Z/�, calculate log3.19/. We set B D 13, so our factor base is
f3; 11; 13g (we have discarded f�1;2;5;7g as they are not in hgi). We
randomly choose several r, searching for values of gr that can be
expressed using our factor base:

p1 p2 p3
r 3r .mod 107/ 3 11 13

3 27 3 0 0
22 99 2 1 0
33 39 1 0 1
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“Bomb Bay Doors Swinging and Open, Baby!”

.
Example
..

......

This corresponds to the additive relations:

3 � 3 log3.3/ .mod 53/ (1)
22 � 2 log3.3/ C 1 log3.11/ .mod 53/ (2)
33 � 1 log3.3/ C 1 log3.13/ .mod 53/ (3)

Equation (1) clearly gives log3.3/ D 1. Equations (2) and (1) give
log3.11/ D 20, and equations (3) and (1) give log3.13/ D 32.
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“Groovy and out.”

.
Example
..

......

I 19 is clearly not 13-smooth.
I Now randomly select r, looking for a 13-smooth 19 � 3r.
I We find 19 � 344 � 39 D 3 � 13 .mod 107/, thus

log3.19/ � log3.3/ C log3.13/ � 44 .mod 53/

log3.19/ � 1 C 32 � 44 � 42 .mod 53/
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Parameters and Performance

I Choosing an optimal B is complicated. See [Poonen 2008].
I This class of algorithms share a time complexity class, namely

Ln.˛; c/ where

Ln.˛; c/ D exp
�
.c C o.1// .log n/˛ .log log n/1�˛

�
I Ln.˛; c/ is sub-exponential.
I Using Lenstra’s elliptic curve factoring method to factor candidates

has time complexity in Lp
�
1=2;

p
2

�
for optimal choice of B.

I Additional work to solve for the logg t is Lp
�
1=2; 1=

p
2

�
. If a larger

than needed B was selected, this step is even faster.
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To Infinity... and Beyond!

I The fundamental notion that must be abstracted to apply this
algorithm to other groups is the notion of smoothness.

I In some cases, this abstracts clearly, and the algorithm directly
applies.

In Fpa, examine the representation of elements as FpŒx�=.f.x// where
f.x/ is a degree a irreducible polynomial.
FpŒx� is a UFD, so we can define smoothness with respect to the
degree of the irreducibles in the factorization of a canonical
polynomial in FpŒx� used to represent the element.
B-smooth in this context means that no irreducible factor has
degree greater than B.
This notion of smoothness directly yields a sub-exponential
algorithm for computing the discrete logarithm problem.
[Bender-Pomerance, 1998]
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Good News Everyone!

I Not all groups currently have a notion of smoothness.
Elliptic curves have no analogous notion at present, which means
that this technique (class) doesn’t apply.
This is one reason that the generalized elliptic curve discrete log
problem is still exponential.
With elliptic curves with low embedding degree we can proceed by
reducing the ECDLP to a DLP over a finite field.
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Is This Talk EVER Going to End?

I We can further abstract by applying a set of index calculus
techniques derived from the Number Field Sieve.

I This leads to a few related approaches:
The Number Field Sieve
The Function Field Sieve

A few notable recent revisions to these algorithms by Joux...

I As we’ll see next time...
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Section 3

Conclusion, Mk. I
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Today’s Conclusion

I The Discrete Log Problem in groups with composite order can be
decomposed.

I Solving Discrete Logarithm Problems is Hard.
I There are a set of algorithms that are deterministic

Brute Force runs in O.n/ and requires little storage.
Baby Step, Giant Step runs in O.

p
n/ and requires O.

p
n/ storage.

I There are more powerful algorithms that are probabilistic
Pollard’s �-method runs (heuristically, probabilistically) in O.

p
n/

and requires little storage.
Index Calculus runs (probabilistically) in Lp

�
1=2;

p
2

�

69 / 71



That’s All Folks!

Thank You!
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Colophon

I The principal font is Evert Bloemsma’s 2004 humanist san-serif
font Legato. This font is designed to be exquisitely readable, and
is a significant departure from the highly geometric forms that
dominate most san-serif fonts. Legato was Evert Bloemsma’s final
font prior to his untimely death at the age of 46.

I Math symbols are typeset using the MathTime Professional II
(MTPro2) fonts, a font package released in 2006 by the great
mathematical expositor Michael Spivak.

I The URLs are typeset in Luc(as) de Groot’s 2005 Consolas, a
monospace font with excellent readability.

I Diagrams were produced in TikZ.
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