Joux's Recent Index Calculus Results

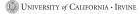
Part I: Introduction to the Computational Discrete Logarithm Problem

Joshua E. Hill

Department of Mathematics, University of California, Irvine

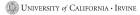
Cryptography Seminar May 14, 2013 http://bit.ly/129p1If

v1.3



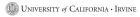
1 Introduction

- 2 Classical Approaches to the Discrete Log Problem
- 3 Conclusion, Mk. I



1 Introduction

- The Discrete Log Problem
- Time Complexity Notes
- 2 Classical Approaches to the Discrete Log Problem
- 3 Conclusion, Mk. I



Subsection 1

The Discrete Log Problem

Definition

Given a finite group G (written multiplicatively), and a generator $g \in G$, given $t = g^{\ell}$ for some $\ell \in \mathbb{Z}$, calculate ℓ . This is called the discrete logarithm, and is denoted $\log_q (t) = \ell$.

The difficulty of performing discrete logs is the foundational hardness assumption for much of cryptography (e.g., Diffie-Hellman and its variants, El Gamal and its variants).

- The difficulty of this problem is profoundly dependent on the underlying group.
- ► All finite cyclic groups are (group-)isomorphic to Z/nZ (under addition), where n = |g|.
- ▶ If we can use the (group-)isomorphism induced by $g \mapsto 1$, the problem becomes trivial.

Example (Multiplicative)

 $(\mathbb{Z}/107\mathbb{Z})^{\times}$ is a cyclic group of order 106, which has subgroups of order 1, 2, 53, 106. The element g = 3 clearly doesn't have order 1 or 2, but $3^{53} \equiv 1 \pmod{107}$, so g generates a group of order 53. It is not clear how to efficiently calculate $\log_3(19)$.

\$

Example (Additive)

 $\mathbb{Z}/106\mathbb{Z}$ is a cyclic group of order 106. The element g = 2 clearly has order 53. The corresponding problem is $\log_2(84) = 42$.

Solving the discrete log problem for every value in the cyclic subgroup completely describes this isomorphism.

Subsection 2

Time Complexity Notes

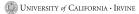
- ▶ We have two eventually positive real valued functions $A, B : \mathbb{N}^k \to \mathbb{R}$. Take **x** as an *n*-tuple, with **x** = (x_1, \ldots, x_n)
- We'll write $|\mathbf{x}|_{\min} = \min_i x_i$.

Definition

 $A(\mathbf{x}) = O(B(\mathbf{x}))$ if there exists a positive real constant *C* and an integer *N* so that if $|\mathbf{x}|_{\min} > N$ then $A(\mathbf{x}) \le CB(\mathbf{x})$. (*i.e.* A is bounded above by B asymptotically.)

Definition

 $A(\mathbf{x}) = o(B(\mathbf{x}))$ if for all positive real constants *C* there is an integer *N* so that if $|\mathbf{x}|_{\min} > N$ then $A(\mathbf{x}) \le CB(\mathbf{x})$. (*i.e.* A is dominated by B asymptotically.)



Definition

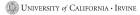
An algorithm is considered polynomial time if it is time complexity $O(x^k)$ where k is a fixed positive integer and x is the input length.

Definition

An algorithm is considered exponential time if it is time complexity $O(2^{x^k})$ where k is a fixed positive integer, and x is the input length.

Definition

An algorithm is considered sub-exponential time if it is time complexity $2^{o(x)}$ where x is the input length.



- These definitions are dependent on the group and its representation.
- Note that a group of order q takes (on average) at least ⌈log₂(q)⌉ bits to represent a group element.
- The log function thus takes an input of $2 \lceil \log_2(q) \rceil$ bits.
- For the purposes of this discussion, imagine $n \sim q$.

1 Introduction

- 2 Classical Approaches to the Discrete Log Problem
 - Reductions
 - Exponential Computational Approaches
 - Subexponential Computational Approaches

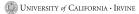
3 Conclusion, Mk. I

1 Introduction

- 2 Classical Approaches to the Discrete Log Problem
 - Reductions
 - Exponential Computational Approaches
 - Subexponential Computational Approaches

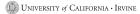
3 Conclusion, Mk. I

(n.b., these are "Classical" in the graduate student sense.)



Subsection 1

Reductions



- ► The difficulty of performing the discrete log operation is determined by the size of the cyclic group |g| = # (⟨g⟩) = n and the group in which it is embedded.
- If n is composite (and can be factored), various reductions are possible.
- These are collectively often known as "The Pohlig-Hellman Algorithm".

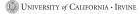
If n = uv and gcd(u, v) = 1, we can solve the discrete log by solving separate discrete logs in a u and v ordered group.

• There are integers a, b so that au + bv = 1.

►
$$|g^u| = v$$
 and $|g^v| = u$.

▶ If we knew $\log_{g^u}(t^u) = \ell_u$ and $\log_{g^v}(t^v) = \ell_v$, then

$$t = t^{au+bv} = g^{u\ell_u a} g^{v\ell_v b} = g^{u\ell_u a+v\ell_v b}$$



If $n = p^a$ then we can solve by performing *a* logs in an order *p* group.

- We seek to calculate $\ell = \log_q (t)$.
- We can represent ℓ base p as $\ell = \sum_{j=0}^{a-1} b_j p^j$ (where $0 \le b_i < p$)
- We can solve for each b_j in succession by performing a calculation in a group of order p:
 - We can solve for b_0 as $t^{p^{a-1}} = g^{\ell p^{a-1}} = g^{b_0 p^{a-1}} = \left(g^{p^{a-1}}\right)^{b_0}$.
 - To solve for b_j , if we know b_0 to b_{j-1} , and let $t_j = tg^{-b_0 b_1 p \dots b_{j-1} p^{j-1}}$, so then t_j^{a-j-1} is in $\left(g^{p^{a-1}}\right)$, so we can solve $\log_{g^{p^{a-1}}}\left(t_j^{p^{a-j-1}}\right)$.

- We can reduce problems of finding logarithms on groups with composite order to (possibly much easier) subproblems.
- This isn't desirable for cryptography, so almost all cryptographic settings require that g generates either:
 - a very large prime ordered group, or
 - a very large group whose order is impractical to factor.
- We can restrict our discussion to groups of prime order.



Subsection 2

Exponential Computational Approaches

Brute force, requires on average n/2 group operations (time complexity is O(n) group operations), negligible storage.

Example

```
In (\mathbb{Z}/107\mathbb{Z})^{\times}, calculate \log_3(19).
```

Зj

Brute force, requires on average n/2 group operations (time complexity is O(n) group operations), negligible storage.

Example

```
In (\mathbb{Z}/107\mathbb{Z})^{\times}, calculate \log_3(19).
```

⊋/่ 1

Brute force, requires on average n/2 group operations (time complexity is O(n) group operations), negligible storage.

Example

```
In (\mathbb{Z}/107\mathbb{Z})^{\times}, calculate \log_3(19).
```

$$\frac{j}{3^j} \begin{array}{cccc} 0 & 1 & 2 & \cdots \\ 3^j & 1 & 3 \end{array}$$

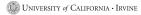
Brute force, requires on average n/2 group operations (time complexity is O(n) group operations), negligible storage.

Example

```
In (\mathbb{Z}/107\mathbb{Z})^{\times}, calculate \log_3(19).
```

$$j \quad 0 \quad 1 \quad 2 \quad \cdots$$

 $3^j \quad 1 \quad 3 \quad 9$



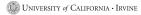
Brute force, requires on average n/2 group operations (time complexity is O(n) group operations), negligible storage.

Example

```
In (\mathbb{Z}/107\mathbb{Z})^{\times}, calculate \log_3(19).
```

$$j 0 1 2 \cdots$$

 $3^{j} 1 3 9 \cdots$



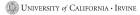
Brute force, requires on average n/2 group operations (time complexity is O(n) group operations), negligible storage.

Example

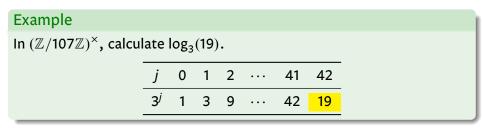
In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$.

$$j \quad 0 \quad 1 \quad 2 \quad \cdots \quad 41$$

 $3^j \quad 1 \quad 3 \quad 9 \quad \cdots \quad 42$



Brute force, requires on average n/2 group operations (time complexity is O(n) group operations), negligible storage.



The Baby Steps, Giant Steps algorithm [Shanks, 1971]

- We seek to calculate $\ell = \log_q (t)$.
- If we let $m = \lceil \sqrt{n} \rceil$, we can write ℓ in base m as $\ell = b_0 + b_1 m$ (with $0 \le b_i < m$). We then see $g^{\ell} = g^{b_0 + b_1 m} = t$, so $g^{-b_1 m} t = g^{b_0}$.
- Calculate the list $\{g^0, \ldots, g^{m-1}\}$, add them to a hash table, and then step through the (at most) *m* calculations ($j \in \{0, 1, \ldots, m-1\}$) for $g^{-jm}t$ until a collision is found. $O(\sqrt{n})$ group operations and storage.

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \left\lceil \sqrt{53} \right\rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

Now calculate the Giant Steps:

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \left\lceil \sqrt{53} \right\rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

Now calculate the Giant Steps:

$$j$$
 0 1 2 3 4 5 6 7 $3^{-8j} \cdot 19$ 19

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \left\lceil \sqrt{53} \right\rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

Now calculate the Giant Steps:

$$j$$
 0 1 2 3 4 5 6 7
 $3^{-8j} \cdot 19$ 19 10

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \left\lceil \sqrt{53} \right\rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

Now calculate the Giant Steps:

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \left\lceil \sqrt{53} \right\rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

Now calculate the Giant Steps:

$$j$$
 0 1 2 3 4 5 6 7
3^{-8j} · 19 10 101 25

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \left\lceil \sqrt{53} \right\rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

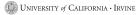
Now calculate the Giant Steps:

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \left\lceil \sqrt{53} \right\rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

Now calculate the Giant Steps:

$$j$$
 0 1 2 3 4 5 6 7
3^{-8j} · 19 19 10 101 25 92 9



In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$; we thus have $m = \lceil \sqrt{53} \rceil = 8$. First, calculate the Baby Steps:

j	0	1	2	3	4	5	6	7
3 ^j	1	3	9	27	81	29	87	47

Now calculate the Giant Steps:

 $\ell=5\cdot 8+2=42$

Probabilistic Approaches:

- ▶ Pollard's ρ -method [Pollard 1978] to calculate $\ell = \log_g(t)$.
 - Attempt to find an $a_i, \hat{a}_i, b_i, \hat{b}_i \in \mathbb{Z}/n\mathbb{Z}$ so that $g^{a_i}t^{b_i} = g^{\hat{a}_i}t^{\hat{b}_i}$.
 - ℓ is then a solution to $(\hat{b}_i b_i) \ell \equiv (a_i \hat{a}_i) \pmod{n}$.
 - Pseudo-randomly explore the group using an iterated function $x_i = f(x_{i-1})$ defined so that $x_i = g^{a_i} t^{b_i}$; start at $x_0 = 1 = g^0 t^0$.
 - We hope to encounter a cycle.
 - Cycle detection using Floyd's cycle detection algorithm.

Some notes on Pollard's ρ-method:

- Encountering a cycle with a random map is expected to occur after $\sqrt{\frac{\pi n}{2}}$ steps.
- We heuristically assume that our function has this same behavior.
- The expected time complexity is then $O(\sqrt{n})$ group operations, with negligible storage required.
- This can fail in the (unlikely) event that the collision is due to $a_i \equiv \hat{a}_i \pmod{n}$ (mod *n*) (and thus $b_i \equiv \hat{b}_i \pmod{n}$).
- This can be abstracted to a parallelizable algorithm by starting each process at a random index a_i and watching for collisions between processes (Pollard's λ-method).

"And I'm Not Going to Take This Anymore!"

- Partition $\langle g \rangle$ into three sets of roughly the same size, S_0, S_1, S_2 .
- Define

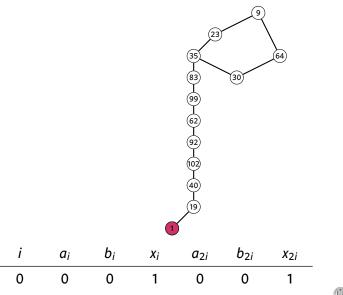
$$f(x) = \begin{cases} tx & x \in S_0 \\ x^2 & x \in S_1 \\ gx & x \in S_2 \end{cases}$$

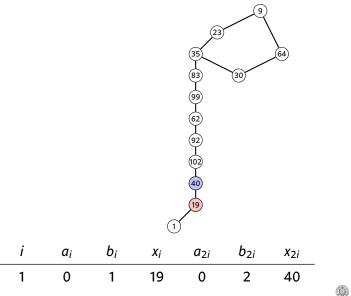
▶ If we step through as $x_{i+1} = f(x_i)$ with $x_i = g^{a_i} t^{b_i}$, then we can examine the exponents:

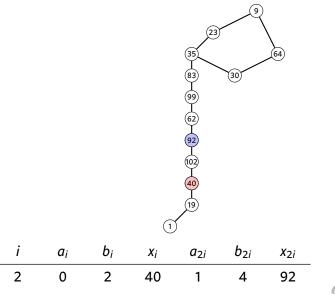
$$f(g^{a_i}t^{b_i}) = \begin{cases} g^{a_i}t^{b_i+1} & g^{a_i}t^{b_i} \in S_0 \\ g^{2a_i}t^{2b_i} & g^{a_i}t^{b_i} \in S_1 \\ g^{a_i+1}t^{b_i} & g^{a_i}t^{b_i} \in S_2 \end{cases}$$

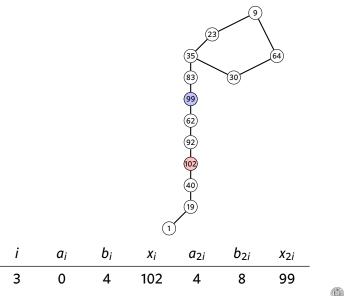
Example

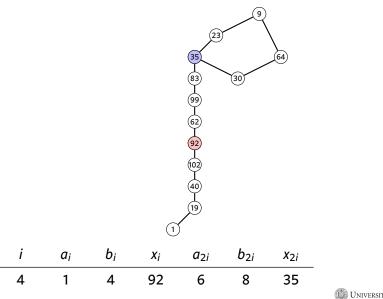
In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate log₃(19). Let $S_0 = \{0, 1, ..., 35\}$, $S_1 = \{36, 37, ..., 71\}$, and $S_2 = \{72, 73, ..., 106\}$.

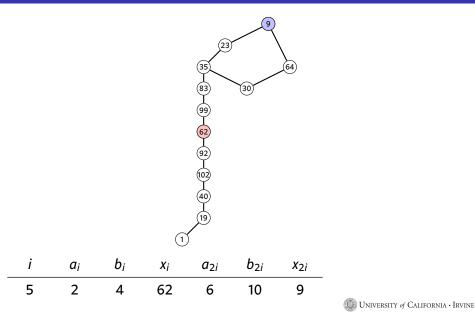


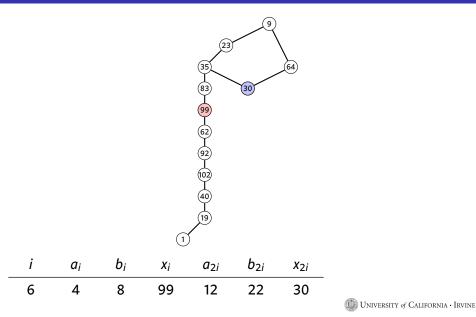


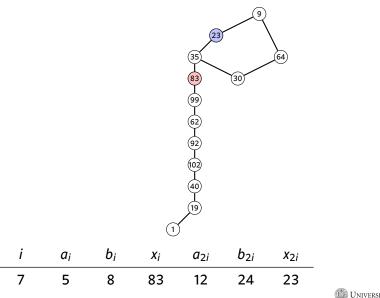


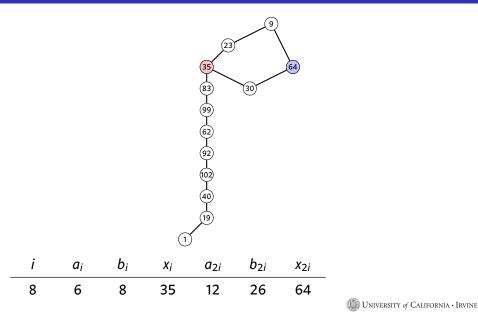




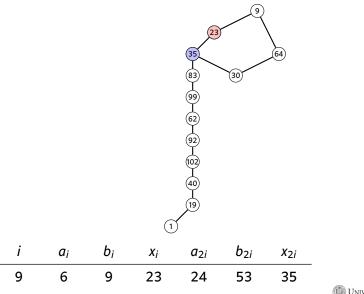




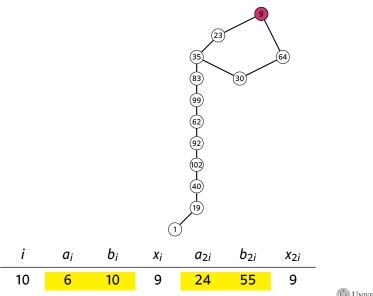




$\overline{\rho}, \overline{\rho}, \overline{\rho}$ your

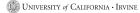


ρ, ρ, ρ your boat...



This gives us:

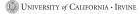
$$\ell \equiv (55 - 10)^{-1}(6 - 24) \equiv 42 \pmod{53}$$



- $n = e^{\log n}$ so $O(\sqrt{n}) = O(e^{\frac{1}{2}\log n})$ is clearly exponential in the size of n.
- Our assumption that n ~ q gives us that this is exponential in the input size.
- All of these computations are with respect to group operations. The time complexity of performing these operations is highly dependent on the group, and varies with q (generally, polynomial in the size of q).

Subsection 3

Subexponential Computational Approaches



53/71

- We first look at the Index Calculus Method [Kraitchik, 1922] and [Hellman-Reyneri, 1983].
- We break down the problem into subproblems.
- ► If we could represent our group as the unit group in a homomorphic image of Z, then we can leverage some structure from Z.
- We will seek relations between factorizations of numbers of the form g^r (mod n).

- If we want relations based on primes found in random integers, we want to pay attention to the primes that occur most often.
- For randomly selected integers within our bounds, small primes will occur as factors of these random numbers more often than large primes.
- ► We are thus interested in small primes, hence smooth integers.

Definition

An integer is *B*-smooth if its factorization involves only primes less than or equal to *B*.

- ► Let's assume we are working in $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ for some odd prime p, and $\langle g \rangle = G$.
- Establish the smoothness bound $B \ll p$.
- ▶ Refer to the *k* primes less than or equal to *B* as $p_1, ..., p_k$. These are called the factor base. By convention, we let $p_0 = -1$.
- Generate g^r where *r* is chosen randomly in [0, p-1].
- ► Factor g^r . If it is *B*-smooth, then we have found a relation, namely $g^r = \prod_{i=0}^k p_i^{e_i}$. This corresponds to the additive relation

$$r \equiv \sum_{i=0}^{k} e_i \log_g(p_i) \pmod{p-1}$$

Take Off Every 'Zig'!

- We already know that $\log_g(-1) = \frac{p-1}{2}$.
- If we collect k independent relations, then we can use linear algebra to solve for the values of each of the log_a(p_i)'s.
- We now have a way of finding the logarithm of any B-smooth integer; if t is B-smooth, then

$$\log_g(t) \equiv \sum_{i=0}^k e_i \log_g(p_i) \pmod{p-1}.$$

- If t is not B-smooth, we could try to find the logarithm of a related value...
 - We randomly search for *r* so that *tg^r* is *B*-smooth.
 - Once we find such an r, we then have:

$$\log_g(t) \equiv -r + \sum_{i=0}^k e_i \log_g(p_i) \pmod{p-1}$$

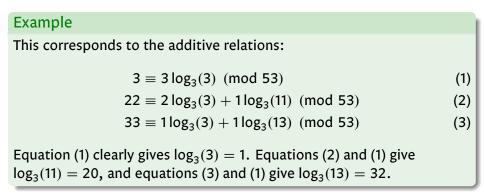
- "You just assumed that we could factor integers that look like g^r (mod p). They could be... large!"
 - We could just use trial division, as we only care about a particular small set of primes.
 - Lenstra's Elliptic Curve Factoring method is a polynomial time method for a sufficiently dense set of smooth integers.
- "You just assumed that we could do linear algebra mod (p-1), which I think implies p = 3!"
 - There are a few options to overcome this problem.
 - You could couple Hensel-style lifting, and then combine results using the CRT.
 - It may also "just work" if you don't need to invert anything that is a factor of (p 1).
 - You could also choose your relations specifically so this step "just works".

As a note, for consistency, we are operating in a subgroup of index 2 here, so some behavior changes.

Example

In $(\mathbb{Z}/107\mathbb{Z})^{\times}$, calculate $\log_3(19)$. We set B = 13, so our factor base is $\{3, 11, 13\}$ (we have discarded $\{-1, 2, 5, 7\}$ as they are not in $\langle g \rangle$). We randomly choose several r, searching for values of g^r that can be expressed using our factor base:

r	3 ^r (mod 107)	р ₁ З	-	р ₃ 13
3	27	3	0	0
22	99	2	1	0
33	39	1	0	1



Example

- ▶ 19 is clearly not 13-smooth.
- Now randomly select r, looking for a 13-smooth $19 \cdot 3^r$.
- We find $19 \cdot 3^{44} \equiv 39 = 3 \cdot 13 \pmod{107}$, thus

$$log_{3}(19) \equiv log_{3}(3) + log_{3}(13) - 44 \pmod{53}$$
$$log_{3}(19) \equiv 1 + 32 - 44 \equiv 42 \pmod{53}$$

- Choosing an optimal B is complicated. See [Poonen 2008].
- ► This class of algorithms share a time complexity class, namely $L_n(\alpha, c)$ where

$$L_n(\alpha, c) = \exp\left(\left(c + o(1)\right) \left(\log n\right)^{\alpha} \left(\log \log n\right)^{1-\alpha}\right)$$

- $L_n(\alpha, c)$ is sub-exponential.
- ► Using Lenstra's elliptic curve factoring method to factor candidates has time complexity in $L_p(1/2, \sqrt{2})$ for optimal choice of *B*.
- Additional work to solve for the $\log_g t$ is $L_p(1/2, 1/\sqrt{2})$. If a larger than needed *B* was selected, this step is even faster.

- The fundamental notion that must be abstracted to apply this algorithm to other groups is the notion of *smoothness*.
- In some cases, this abstracts clearly, and the algorithm directly applies.
 - In \mathbb{F}_{p^a} , examine the representation of elements as $\mathbb{F}_p[x]/(f(x))$ where f(x) is a degree *a* irreducible polynomial.
 - $\mathbb{F}_p[x]$ is a UFD, so we can define smoothness with respect to the degree of the irreducibles in the factorization of a canonical polynomial in $\mathbb{F}_p[x]$ used to represent the element.
 - B-smooth in this context means that no irreducible factor has degree greater than B.
 - This notion of smoothness directly yields a sub-exponential algorithm for computing the discrete logarithm problem. [Bender-Pomerance, 1998]

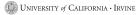
▶ Not all groups currently have a notion of *smoothness*.

- Elliptic curves have no analogous notion at present, which means that this technique (class) doesn't apply.
- This is one reason that the generalized elliptic curve discrete log problem is still exponential.
- With elliptic curves with low embedding degree we can proceed by reducing the ECDLP to a DLP over a finite field.

- We can further abstract by applying a set of index calculus techniques derived from the Number Field Sieve.
- This leads to a few related approaches:
 - The Number Field Sieve
 - The Function Field Sieve

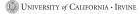
- We can further abstract by applying a set of index calculus techniques derived from the Number Field Sieve.
- This leads to a few related approaches:
 - The Number Field Sieve
 - The Function Field Sieve
 - A few notable recent revisions to these algorithms by Joux...

- We can further abstract by applying a set of index calculus techniques derived from the Number Field Sieve.
- This leads to a few related approaches:
 - The Number Field Sieve
 - The Function Field Sieve
 - A few notable recent revisions to these algorithms by Joux...
- As we'll see next time...



Section 3

Conclusion, Mk. I



68/71

- The Discrete Log Problem in groups with composite order can be decomposed.
- Solving Discrete Logarithm Problems is Hard.
- There are a set of algorithms that are deterministic
 - Brute Force runs in *O*(*n*) and requires little storage.
 - Baby Step, Giant Step runs in $O(\sqrt{n})$ and requires $O(\sqrt{n})$ storage.
- There are more powerful algorithms that are probabilistic
 - Pollard's ρ -method runs (heuristically, probabilistically) in $O(\sqrt{n})$ and requires little storage.
 - Index Calculus runs (probabilistically) in $L_p\left(1/2, \sqrt{2}\right)$

Thank You!

70/71

- The principal font is Evert Bloemsma's 2004 humanist san-serif font Legato. This font is designed to be exquisitely readable, and is a significant departure from the highly geometric forms that dominate most san-serif fonts. Legato was Evert Bloemsma's final font prior to his untimely death at the age of 46.
- Math symbols are typeset using the MathTime Professional II (MTPro2) fonts, a font package released in 2006 by the great mathematical expositor Michael Spivak.
- The URLs are typeset in Luc(as) de Groot's 2005 Consolas, a monospace font with excellent readability.
- Diagrams were produced in TikZ.

