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Subsection 1

The Discrete Log Problem
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Discrete and Discreet

Definition
Given a finite group G (written multiplicatively), and a generator g € G,
given t = g for some £ € Z, calculate £. This is called the discrete

logarithm, and is denoted log, (t) = £.

» The difficulty of performing discrete logs is the foundational
hardness assumption for much of cryptography (e.g.,
Diffie-Hellman and its variants, El Gamal and its variants).
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Running With the Wrong Group

» The difficulty of this problem is profoundly dependent on the
underlying group.

» All finite cyclic groups are (group-)isomorphic to Z/nZ (under
addition), where n = |g|.

» If we can use the (group-)isomorphism induced by g + 1, the
problem becomes trivial.
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Jets vs. Sharks

Example (Multiplicative)

(Z/107Z)* is a cyclic group of order 106, which has subgroups of order
1,2,53,106. The element g = 3 clearly doesn’t have order 1 or 2, but
3°3 =1 (mod 107), so g generates a group of order 53. It is not clear
how to efficiently calculate log;(19).

Example (Additive)

7Z,/1067Z is a cyclic group of order 106. The element g = 2 clearly has
order 53. The corresponding problem is log,(84) = 42.

Solving the discrete log problem for every value in the cyclic subgroup
completely describes this isomorphism.

S
4.5 UNIVERSITY of CALIFORNIA « IRVINE

7/71



Subsection 2

Time Complexity Notes
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Big-O Notation (and Family)

» We have two eventually positive real valued functions
A,B: Nk - R. Take x as an n-tuple, with x = (x1,....xp)

> We’ll write |X| i, = min;x;.

Definition

A(x) = O(B(x)) if there exists a positive real constant C and an integer N
so that if ||, > N then A(x) < CB(x). (i.e. A is bounded above by B
asymptotically.)

Definition

A(x) = o(B(x)) if for all positive real constants C there is an integer N so
that if [x|,;, > N then A(x) < CB(x). (i.e. Ais dominated by B
asymptotically.)

v
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“When | Use a Word...”

Definition
An algorithm is considered polynomial time if it is time complexity
O(x¥) where k is a fixed positive integer and x is the input length.

Definition
An algorithm is considered exponential time if it is time complexity
O(2Xk) where k is a fixed positive integer, and x is the input length.

Definition
An algorithm is considered sub-exponential time if it is time complexity
2°®) where x is the input length.

W
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“It Means Just What | Choose it to Mean”

v

These definitions are dependent on the group and its
representation.

Note that a group of order g takes (on average) at least [log,(q)]
bits to represent a group element.

The log function thus takes an input of 2 [log,(q)] bits.
For the purposes of this discussion, imagine n ~ q.

\

v

\
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Introduction Outline
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Introduction Outline

Classical Approaches to the Discrete Log Problem

m Reductions
m Exponential Computational Approaches
m Subexponential Computational Approaches

(n.b., these are “Classical” in the graduate student sense.)
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Subsection 1
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» The difficulty of performing the discrete log operation is
determined by the size of the cyclic group |g| = # ({(9)) = n and the
group in which it is embedded.

» If nis composite (and can be factored), various reductions are
possible.

» These are collectively often known as “The Pohlig-Hellman
Algorithm”.
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Composite Reduction #1

If n = uvand gcd(u,v) = 1, we can solve the discrete log by solving
separate discrete logs in a u and v ordered group.

» There are integers a, b so that au + bv = 1.
> |g“| =vand |g"] = u.
> If we knew logg. (tY) = £, and log,, (t") = ¢y, then

t= tau—l—bv — guZua ve,b ulya+ve,b

g =9
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Composite Reduction #2

If n = p? then we can solve by performing a logs in an order p group.
> We seek to calculate ¢ = log (t).
» We can represent £ basep as { = z;’;g bjpf (where 0 < b; < p)

> We can solve for each b; in succession by performing a calculation
in a group of order p:

_ _ _ —1\ bo
m We can solve for by as tP' = gtP" = gbor"" = (gpa 1) .
m To solve for by, if we know by to bj_, and let t; = tg—to—bw—-—biP™"

a—j—1._ . a—1 pa—j—1
so then G is in <gp >, so we can solve Ioggpa—1 (tj .
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Reduction Summary

» We can reduce problems of finding logarithms on groups with
composite order to (possibly much easier) subproblems.

» This isn’t desirable for cryptography, so almost all cryptographic
settings require that g generates either:

m avery large prime ordered group, or
m avery large group whose order is impractical to factor.

» We can restrict our discussion to groups of prime order.
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Subsection 2

Exponential Computational Approaches
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Pick Your Poison: Exhaustion

Deterministic Approaches

» Brute force, requires on average n/2 group operations (time
complexity is O(n) group operations), negligible storage.

Example
In (Z/107Z)*, calculate log5(19).
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Pick Your Poison: Exhaustion

Deterministic Approaches

» Brute force, requires on average n/2 group operations (time
complexity is O(n) group operations), negligible storage.

Example
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Pick Your Poison: Exhaustion

Deterministic Approaches

» Brute force, requires on average n/2 group operations (time
complexity is O(n) group operations), negligible storage.

Example
In (Z/107Z)*, calculate log5(19).

41

42

42

19
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Pick Your Poison: Drowning

» The Baby Steps, Giant Steps algorithm [Shanks, 1971]
m We seek to calculate ¢ = log, (¢).
m If we let m = [/n], we can write £ in base m as £ = by + bym (with
0 < b; < m) . We then see gt = gbotbm — ¢, 50 g=01mt = gbo,
m Calculate the list {g°, ..., g™ "}, add them to a hash table, and then
step through the (at most) m calculations (j € {0,1,...,m —1}) for
g™t until a collision is found. O (/n) group operations and storage.
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
378.19

4
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
378%.19 19 10

4
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
378.19 19 10 101

4
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
378.19 19 10 101 25

4
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
378.19 19 10 101 25 92

4
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
37%.19 19 10 101 25 92 9

4
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First, Find a Nice Lake

Example

In (Z/107Z)™, calculate log;(19); we thus have m = {«/53—| = 8. First,
calculate the Baby Steps:

j 012 3 4 5 6 7
3 1 3 9 27 81 29 87 47

Now calculate the Giant Steps:

j 0 1 2 3 4 5 6 7
37%.19 19 10 101 25 92 9

(=5.-842=42

4
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“Your Friend Here is Only Mostly Dead!”

Probabilistic Approaches:

> Pollard’s p-method [Pollard 1978] to calculate £ = log (¢).
Attempt to find an a;, a;, by, b; € Z/nZ so that g°itbi = gaft‘;f.
£ is then a solution to (B,- - b,-) ¢ = (ai—a;) (mod n).
Pseudo-randomly explore the group using an iterated function
x; = f(xi_) defined so that x; = g%t%; start at xo = 1 = g°t°.
We hope to encounter a cycle.
Cycle detection using Floyd’s cycle detection algorithm.
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“’m as Mad as Hell...”

» Some notes on Pollard’s p-method:

m Encountering a cycle with a random map is expected to occur after
\/? steps.

m We heuristically assume that our function has this same behavior.

m The expected time complexity is then O (ﬁ) group operations, with
negligible storage required.

m This can fail in the (unlikely) event that the collision is due to a; = a;
(mod n) (and thus b; = b; (mod n)).

m This can be abstracted to a parallelizable algorithm by starting each
process at a random index a; and watching for collisions between
processes (Pollard’s A-method).
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“And I’m Not Going to Take This Anymore!”

» Partition (g) into three sets of roughly the same size, So, S1, S2.

» Define
tx X€Sp
fxX) =1x* xe$5
gx XeS

> If we step through as x;1 = f(x;) with x; = g%t%i, then we can
examine the exponents:

gaitbi+1 gaitbi c SO
f(ga,'tb,') — g2a,'t2bi gaitbi €S
gai+1tbi gaitbi c 52

B
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Like the Chase Scene in “The French Connection”

Example

In (Z/107Z)*, calculate log5(19). Let So = {0, 1,...35},
S1=1{36,37,...71},and S, = {72,73,...106}.

Ry
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E-E--C-R-E-B®-®
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i a; b; Xi a; by Xy

1 0 1 19 0 2 40
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i a; b; Xi a; by Xy

2 0 2 40 1 4 92
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i a; b; Xi a; by Xy

3 0 4 102 4 8 99
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P P

X2i

35
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P P

by

X2i

10
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P P

X2i

30
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P P

X2i

23
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P P, P

i a; b; Xi a; by Xy

8 6 8 35 12 26 64
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P, p, p your

i a; b; Xi a; by Xy

9 6 9 23 24 53 35
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o, p, p your boat...

(23

G

E-E-R-C-R-C-B®-®

i a; b; Xi a; by Xy

10 6 10 9 24 55 9
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A Photo Finish!

This gives us:

¢ =(55—-10)""(6 —24) =42 (mod 53)
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A Note on O (+/n)

> n=e"s00(/n)=0 (e%'°g") is clearly exponential in the size
of n.

» Our assumption that n ~ g gives us that this is exponential in the
input size.

» All of these computations are with respect to group operations.
The time complexity of performing these operations is highly
dependent on the group, and varies with g (generally, polynomial
in the size of g).
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Subsection 3

Subexponential Computational Approaches
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| don’t like this problem. Let’s change it!

» We first look at the Index Calculus Method [Kraitchik, 1922] and
[Hellman-Reyneri, 1983] .

> We break down the problem into subproblems.

» If we could represent our group as the unit group in a
homomorphic image of Z, then we can leverage some structure
from Z.

» We will seek relations between factorizations of numbers of the
form g" (mod n).
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That’s SMOOTH!

» If we want relations based on primes found in random integers, we
want to pay attention to the primes that occur most often.

» For randomly selected integers within our bounds, small primes
will occur as factors of these random numbers more often than

large primes.
» We are thus interested in small primes, hence smooth integers.
Definition
An integer is B-smooth if its factorization involves only primes less than
or equal to B.
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All Your Factor Base are Belong to Us.

» Let’s assume we are working in G = (Z/pZ)™ for some odd prime
p, and (g) = G.

» Establish the smoothness bound B « p.

» Refer to the k primes less than or equal to Bas py, ..., px. These are
called the factor base. By convention, we let pg = —1.

» Generate g" where ris chosen randomly in [0, p —1].

» Factor g". If it is B-smooth, then we have found a relation, namely
9 =TT p;’. This corresponds to the additive relation

k
r=Y ejlogy(p) (modp—1)

i=0
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Take Off Every ‘Zig’!

—1

> We already know that log,(—1) = &5-.

» If we collect kindependent relations, then we can use linear
algebra to solve for the values of each of the log,(p;)’s.

» We now have a way of finding the logarithm of any B-smooth
integer; if t is B-smooth, then

k
logy(t) = > eilogy(p) (mod p—1).
i=0
» If t is not B-smooth, we could try to find the logarithm of a related
value...

m We randomly search for r so that tg" is B-smooth.
m Once we find such an r, we then have:

k
log,(t) = —r + > _eilogy(p) (mod p—1)
=0 _';} UNIVERSITY of CALIFORNIA - IRVINE
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Hold on There, Sparky!

> “You just assumed that we could factor integers that look like g"
(mod p). They could be... large!”

We could just use trial division, as we only care about a particular
small set of primes.

Lenstra’s Elliptic Curve Factoring method is a polynomial time
method for a sufficiently dense set of smooth integers.

> “You just assumed that we could do linear algebra mod (p — 1),
which | think implies p = 3!”

There are a few options to overcome this problem.

You could couple Hensel-style lifting, and then combine results
using the CRT.

It may also “just work” if you don’t need to invert anything that is a
factor of (p —1).

You could also choose your relations specifically so this step “just
works”.
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“Do the Bomb Bay Door Thing.”

As a note, for consistency, we are operating in a subgroup of index 2
here, so some behavior changes.

Example

In (Z/107Z)™, calculate log5(19). We set B = 13, so our factor base is
{3,11,13} (we have discarded {—1, 2,5, 7} as they are not in (g)). We
randomly choose several r, searching for values of g" that can be
expressed using our factor base:

b1 p2 p3

r 3"(mod107) 3 11 13
3 27 3 0 O
22 99 2 1 0
33 39 1T 0 1

v
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“Bomb Bay Doors Swinging and Open, Baby!”

Example
This corresponds to the additive relations:

3 =3log;(3) (mod 53) ©)
22 = 2log;(3) + 1logs(11) (mod 53) (2)
33 = 1log;(3) + 1log;(13) (mod 53) (3)

Equation (1) clearly gives log;(3) = 1. Equations (2) and (1) give
log;(11) = 20, and equations (3) and (1) give log;(13) = 32.
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“Groovy and out.”

Example
»> 19 is clearly not 13-smooth.
» Now randomly select r, looking for a 13-smooth 19 - 3",
» We find 19- 3% = 39 = 3.13 (mod 107), thus

log5(19) = log;(3) + log3(13) — 44 (mod 53)
log5(19) =1+ 32 — 44 = 42 (mod 53)
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Parameters and Performance

» Choosing an optimal B is complicated. See [Poonen 2008].

» This class of algorithms share a time complexity class, namely
Ly(a, ¢) where

Ln(a, C) = exp ((c + 0(1)) (logn)® (loglog n)1_“)

> L,(a,c) is sub-exponential.
» Using Lenstra’s elliptic curve factoring method to factor candidates
has time complexity in L, (1/2, ﬁ) for optimal choice of B.

> Additional work to solve for the log, t is L (1/2, 1/ﬁ). If a larger

than needed B was selected, this step is even faster.
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To Infinity... and Beyond!

» The fundamental notion that must be abstracted to apply this
algorithm to other groups is the notion of smoothness.

> In some cases, this abstracts clearly, and the algorithm directly
applies.

m In F,e, examine the representation of elements as F,[x]/(f(x)) where
f(x) is a degree a irreducible polynomial.

m F,[x] is a UFD, so we can define smoothness with respect to the
degree of the irreducibles in the factorization of a canonical
polynomial in F,[x] used to represent the element.

m B-smooth in this context means that no irreducible factor has
degree greater than B.

m This notion of smoothness directly yields a sub-exponential
algorithm for computing the discrete logarithm problem.
[Bender-Pomerance, 1998]
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Good News Everyone!

» Not all groups currently have a notion of smoothness.
m Elliptic curves have no analogous notion at present, which means
that this technique (class) doesn’t apply.
m This is one reason that the generalized elliptic curve discrete log
problem is still exponential.
m With elliptic curves with low embedding degree we can proceed by
reducing the ECDLP to a DLP over a finite field.
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Is This Talk EVER Going to End?

» We can further abstract by applying a set of index calculus
techniques derived from the Number Field Sieve.

» This leads to a few related approaches:

m The Number Field Sieve
® The Function Field Sieve
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Is This Talk EVER Going to End?

» We can further abstract by applying a set of index calculus
techniques derived from the Number Field Sieve.
» This leads to a few related approaches:

m The Number Field Sieve
m The Function Field Sieve
m A few notable recent revisions to these algorithms by Joux...
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Is This Talk EVER Going to End?

» We can further abstract by applying a set of index calculus
techniques derived from the Number Field Sieve.

» This leads to a few related approaches:

m The Number Field Sieve
m The Function Field Sieve
m A few notable recent revisions to these algorithms by Joux...

> As we’ll see next time...

‘1.5 UNIVERSITY of CALIFORNIA - IRVINE

67/71



Section 3

Conclusion, Mk. |
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Today’s Conclusion

v

The Discrete Log Problem in groups with composite order can be
decomposed.

v

Solving Discrete Logarithm Problems is Hard.
There are a set of algorithms that are deterministic

m Brute Force runs in O(n) and requires little storage.

m Baby Step, Giant Step runs in O(4/n) and requires O(/n) storage.
There are more powerful algorithms that are probabilistic

m Pollard’s p-method runs (heuristically, probabilistically) in O(i/n)
and requires little storage.

m Index Calculus runs (probabilistically) in L, (1/2, ﬁ)

\

v
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That’s All Folks!

Thank You!



Colophon

» The principal font is Evert Bloemsma’s 2004 humanist san-serif
font Legato. This font is designed to be exquisitely readable, and
is a significant departure from the highly geometric forms that
dominate most san-serif fonts. Legato was Evert Bloemsma’s final
font prior to his untimely death at the age of 46.

» Math symbols are typeset using the MathTime Professional Il
(MTPro2) fonts, a font package released in 2006 by the great
mathematical expositor Michael Spivak.

» The URLs are typeset in Luc(as) de Groot’s 2005 Consolas, a
monospace font with excellent readability.

» Diagrams were produced in TikZ.
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