

 10/15/2018

1

NIST Special Publication 800-90B Comments
Comments on the January 2018 (final) version of SP800-90B

Revision history

Revision Date Author Description of Change
1.0 02/21/2018 Joshua E. Hill, PhD

Ben Jackson, PhD
Initial release.

1.1 06/25/2018 Joshua E. Hill, PhD Minor editorial changes. Additional Restart test comment
(Comment 3d). Refinement to comment on Output_Entropy
(Comment 5c), removal of Comments 5b and 5e, and a new
comment on an instance where this function is not necessary
(Comment 5f). New graph showing the problem with XORing
ring oscillators (Comment 7b). New graph depicting the non-
IID assessment distribution for ideal multi-bit sources (Figure
6). New section comparing modeled and statistically assessed
noise sources (Section 4). Added “References” section
(Section 5).

1.2 07/18/2018 Joshua E. Hill, PhD Modify comment #1 to reflect our internal process refinement.
Comment #15 withdrawn. New comment #16 describes a typo
in the compression test’s G(z). New comment #17 describes
an undefined behavior in the LZ78Y prediction estimate.

1.3 10/15/2018 Joshua E. Hill, PhD New comments: 2b (comments on the ambiguity on calculating
Hbitstring), 12a (which points out that in the goodness-of-fit chi
squared test expectation is calculated incorrectly when L is not
divisible by 10), 18 (bzip use is incompletely specified), 19 (a
simplification of the collision estimate’s F function), and 20 (an
alternate way of reducing the number of symbols).

1 Introduction
We would first like to congratulate the authors on the publication of the final SP800-90B
document. It provides an excellent framework for addressing a very difficult and important
challenge within many different security evaluation schemes, and we are sure that it will be
extremely valuable for years to come.

We have some comments on the final document; most of our comments are requests for
clarification or minor corrections. The two notable exceptions are comments #3 (the Restart
Sanity Check) and #8 (the requirement for entropy and noise source entropy assessment
invariance across all expected conditions). We view these two issues as jeopardizing the
success of the validation program outlined within SP800-90B, because

• the restart sanity check will erroneously fail certain types of correctly working noise
sources at a much higher rate than intended (Comment #3), and

• entropy and noise sources are expected to meet requirements that preclude almost all
commercially produced noise/entropy sources (Comment #8).

We also outline a series of results that demonstrate that most of the statistical tests specified
work as we expected (with the exception of the Restart Sanity Check, as mentioned above),
provide examples of the tests assessing data produced from a variety of simulated results, and
provide modeled min-entropy results for comparison.

 10/15/2018
2

2 Comments
Our comments on the final SP800-90B requirements are:

1. In general, our existing assessment process uses much more data than is requested in
SP800-90B; as is clear in the graphs that follow, data sets from a noise source with fixed
entropy-relevant parameters have min entropy assessments that conform to some
underlying (noise-source dependent) distribution. A single value taken from that
distribution doesn’t tell the tester a great deal about the underlying distribution, but
iterated assessment can. Our current practice is to request 100,000,000 samples, and
break this data into 100 1,000,000-sample sets. We independently assess each of the
100 sets, and calculate the median of the assessed values. We then use bootstrapping
to establish a confidence interval for the median, and use the lower bootstrap confidence
interval bound as the assessed min entropy for the noise source. This practice yields a
more consistent and repeatable value than simply using the result of a single
assessment. We occasionally encounter products that produce data at such a slow rate
that this process isn’t feasible, at which point we can easily perform reduced testing
(such assessments are still useful, but less meaningful). We have not encountered any
vendor who was unable to produce at least several sets of 1,000,000 noise samples. We
encourage you to refine this document so that such an assessment strategy is explicitly
allowed and encouraged.

2. Section 3.1.3:
a. In the non-IID case, the use of the single-bit-assessment strategy within the

multi-bit-assessment strategy (using the term 𝑛𝑛 × 𝐻𝐻bitstring in the last paragraph of
this section) limits 𝐻𝐻I to about 85% of 𝑛𝑛, as a consequence of the fact that this is
the median assessment for statistically idealized single-bit sources. The
corresponding limitation for IID sources is 99% of 𝑛𝑛, but we rarely encounter
noise sources that are IID. Further, it isn’t clear that a binary IID assessment of a
sample from an IID multi-bit sample is appropriate, as IID multi-bit samples need
not be bitwise IID. (This also occurs in Section 3.1.5.2. See comment #6.)

b. This document does not specify how to represent the dataset as a bitstring of
size 𝑛𝑛𝑛𝑛, so this procedure is not completely specified. How are the symbols to be
arranged, and how is each symbol to be encoded? For example, if we just
concatenate the symbols together from the first symbol to the last symbol, we still
need to know how the symbols should be encoded: most significant bit to least
significant bit, least significant bit to most significant bit, or some other encoding.

3. For the test in Section 3.1.4.3 (the restart sanity check), there is a test construction
issue. If this test indicates a failure, then the lab/vendor is prohibited from crediting the
noise source with any entropy production, which is (from the vendor’s perspective) a
catastrophic result. As such, it is vital that this test behave correctly. Our testing
indicates that this test fails much more commonly than anticipated (e.g., a theoretical
failure rate of nearly 100% for wide data; see Section 3.2 of this comment document for
details). The current test construction will lead to a significant proportion of correctly
operating sources being erroneously disqualified.

a. This test isn’t correctly constructed, because the value that is found isn’t
necessarily the maximum count of the noise source’s most likely symbol. Instead,
it is the maximum count of the column/row-specific most likely symbol, which
may be the source’s most likely symbol, or it might be any of the other symbols.
For example, in the binary case, if one wants to find 𝑃𝑃(𝑋𝑋 = 𝑋𝑋max), then one
should account for both the case where the noise source’s most common symbol

 10/15/2018
3

occurred the most in the row/column, and also account for the probability that the
most common symbol in a row/column is the noise source’s least common
symbol. The underlying distribution for the existing test is really the maximum
count of any symbol of a multinomial distribution; our testing indicates that the
binomial distribution isn’t a good approximation of the actual underlying
distribution. This suggests three possible approaches:

i. Corrected Simulated Cutoff Restart Sanity Check: The tester establishes
the appropriate cutoff through simulation, using the parameters for the
noise source under evaluation. In our testing, the highest cutoff (the
“worst case”) appears to occur when as many symbols as possible have
the same probability as the most probable symbol, and then (if
necessary) one final symbol so that the sum of the probabilities is 1 (all
other symbols have probability 0). We found that performing 2,000,000
rounds of simulation of the 1000-sample test (analogous to the per-
row/column test) provided stable results.

ii. Corrected Exact Cutoff Restart Sanity Check: The tester establishes the
appropriate cutoff through application of exact methods; Levin’s “A
Representation for Multinomial Cumulative Distribution Functions” and
Corrado’s “The exact distribution of the maximum, minimum, and the
range of Multinomial / Dirichlet and Multivariate Hypergeometric
frequencies” both contain (somewhat complicated) procedures for
extracting exact cutoffs. Again, one would have to apply the “worst case”
probabilities described above.

iii. Corrected Binomial Restart Sanity Check: Change the test so that the
binomial distribution is the correct underlying distribution. One way to do
this would be to first find the most common symbol within the dataset, and
then count the number of occurrences of that particular fixed symbol in
each row/column.

We characterize the original approach, and modified approaches (i) and (iii) in
Section 3.2 of this comment document. Approach (ii) is expected to perform
equivalently to approach (i).

b. This test is also not correctly constructed, because the rows/columns are
evidently not independent (any matrix entry which is the most likely symbol
contributes to a row and a column count). It’s not clear how to fix this issue, but it
appears that this doesn’t significantly impact the pass rate, so we think that it
seems safe to ignore this theoretical problem.

c. This current test specification has some notational problems (this does not affect
the results of the testing). The stated equation for the p-value,

𝑃𝑃(𝑋𝑋 ≥ 𝑋𝑋max) = � �1000
𝑗𝑗 � 𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)1000−𝑗𝑗

1000

𝑗𝑗=𝑋𝑋max

is incorrect, as this is not the probability of this event. This fact is clearly
acknowledged in the second paragraph of Section 3.1.4.3 by the use of the test
statistic cutoff of 0.000005 for a targeted false reject rate of 0.01. The correct
calculation (which should then be compared against the cutoff 0.01) can be put in
terms of the appropriate Binomial Distribution CDF (BCDF) as follows1:

1 This presumes that the test has been reformulated so that the underlying distribution is the Binomial
Distribution. If one of the other approaches is taken, then the p-value isn’t likely to be easy to calculate, and a
comparison with a pre-calculated cutoff is performed instead.

 10/15/2018
4

𝑃𝑃(𝑋𝑋 ≥ 𝑋𝑋max) = 1 − �1 −� �1000
𝑗𝑗 � 𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)1000−𝑗𝑗

1000

𝑗𝑗=𝑋𝑋max
�
2000

= 1 − �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1000, 𝑝𝑝, 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 1)�2000
d. For wide data (data with more than 256 symbols), it is not clear if the data tested

for the restart tests is the mapped-down data (as required in Section 3.1.3) or the
original wide data. The text of 3.1.4.1 seems to suggest that this should be
unmapped data, but in 3.1.4.2, the entropy estimation tests are conducted, which
generally presume that the data is at most 8 bits wide.

4. In Section 3.1.5, the entropy source is conceptualized as having a single conditioning

function, but it isn’t clear how entropy sources that process the raw noise through more
than one conditioning stage should be handled. Should all conditioning stages be
thought of as a single conditioning function, or is it acceptable to have multiple
conditioning stages, where separate entropy assessments are generated for each step?
In the latter case, must the output of each non-vetted conditioning function be separately
statistically assessed (generating separate ℎ’ for each stage)?

5. In Section 3.1.5.1.2:
a. The upper bound for the number of collisions used by Output_Entropy function

(𝑈𝑈) only applies when 𝑛𝑛in ≥ 𝑛𝑛 = min(𝑛𝑛out, 𝑛𝑛𝑛𝑛) (indeed, in the paper that this
formula is based on2, this formula applies only in the case where 𝑛𝑛 + log2 𝑛𝑛 ≪
 𝑛𝑛in). In the case where 𝑛𝑛in < 𝑛𝑛𝑛𝑛, we think that the text should indicate that 𝑛𝑛𝑛𝑛
should be set to 𝑛𝑛in so that the formula for 𝑈𝑈 makes sense. This action is
consistent with the notion of 𝑛𝑛𝑛𝑛 presented in Appendix E.

b. Comment withdrawn. (Modeling suggests the proposal in this comment is overly
conservative.)

c. It doesn’t seem proper that the behavior of Output_Entropy varies with the data
encoding of output of their noise source; in this formula, we think that 𝑛𝑛in should
likely be replaced by the minimal number of bits required to encode the noise
source output being passed into the conditioning function (⌈𝑤𝑤 log2 𝑘𝑘⌉). Below we
have the result (after applying the changes suggested in (a) above) of using
something like CRC64 (so 𝑛𝑛out = 𝑛𝑛𝑛𝑛 = 64), under the assumption that the
vendor feeds in noise source outputs which are one of two symbols, with 1 bit of
entropy each noise source output / conditioning input block, either encoded in 1-
bit input blocks, or in 64-bit input blocks. Fundamentally, it seems like the entropy
produced should be the same in either case. This issue would naturally arise
when using any conditioning function that can operate on blocks of arbitrary
length.

2 It is also not clear what the meaning of 𝛼𝛼 is in this paper, so it’s not clear that the selection of 𝛼𝛼 = 1 is
appropriate.

 10/15/2018
5

Figure 1

d. In this section, SP800-90B claims that “vetted conditioning functions are
permitted to claim full entropy”, but it isn’t clear how this claim could be justified;
the formula (either before or after the changes we propose) doesn’t appear to
yield exactly ℎout = 𝑛𝑛out, and it’s not clear how close to ℎout = 𝑛𝑛out you have to be
in order to describe the entropy source as producing “full entropy”. (This could be
resolved in SP800-90C, but this ambiguity immediately impacts the use of the
SP800-90A CTR_DRBG without a derivation function, as this construction
requires the seed to be full entropy.)

e. Comment withdrawn. (This question is resolved in the last paragraph of
3.1.5.1.2.)

f. In the instance where the conditioning function can be shown to be bijective,
there should be some allowance to not apply this formula. (In this instance, ℎout =
ℎin) Common examples of such processing include encrypting the raw outputs,
and certain styles of LFSR use.

6. In the non-IID case, Section 3.1.5.2 effectively limits ℎout to about 85% of 𝑛𝑛out, as a
consequence of the fact that this is the median assessment for statistically idealized
single-bit sources. (This applies even in the multi-bit base, because one step is to
assess the multi-bit symbols as if they were the output of a bit-oriented noise source.)
The corresponding limitation for IID sources is 99% of 𝑛𝑛out, but we rarely encounter
noise sources that are IID. Further, it isn’t clear that a binary IID assessment of a sample
from an IID multi-bit sample is appropriate, as IID multi-bit samples need not be bitwise
IID. (This also occurs in Section 3.1.3; see Comment #2 above.)

7. In Section 3.1.6:
a. It’s not clear what “multiple copies of the same physical noise source” are,

exactly. For example, can we treat multiple ring oscillators with different nominal
frequencies as such “multiple copies”? Specifically, how can vendors and labs
distinguish between a “copy” of a noise source and an “additional noise source”?

 10/15/2018
6

b. We are uncomfortable with the standard allowing the XOR of “multiple copies” of
the “same” physical noise source as being considered a single noise source. In
particular, in the provided example of the XOR of the output of multiple ring
oscillators, if there are a large enough number of rings, this output is expected to
look statistically excellent even if the rings are fully deterministic (see Figure
2).This is a particular problem in this context, as the main assessment strategy
here relies on just such a statistical assessment to establish the entropy.

Figure 2

c. The document states that an entropy source can only credit data from a single
noise source (the primary noise source). All other noise sources cannot be
credited, and they can only be used (at all, without credit) if the conditioning
function combining the noise source outputs is one of the vetted conditioning
functions. This impacts operating systems particularly, as this section suggests
that, for example, network interrupt timing and hard drive timing cannot both be
credited. This means that OS-based entropy sources will have to designate a
single primary noise source to credit, and can only continue using the other
sources if the conditioning is performed with a vetted conditioning function. (For
example, this isn’t compatible with how Linux’s /dev/random LRNG is structured.)
We don’t have a technical objection to this requirement (it is hard to characterize
mutual entropy in such systems!), but it’s going to cause substantial headaches
for our customers.

8. Both Section 3.2.1 requirement #3 and Section 3.2.2 requirement #2 seem to suggest
that all instances of the noise source must behave essentially the same way across all
per-part and environmental conditions within its operational range. This isn’t true for any
noise / entropy source that we’ve ever encountered; most of the physical sources have
substantial part-to-part variation due to manufacturing variations, substantial
temperature and voltage sensitivity, and some depend on the frequency of external

 10/15/2018
7

clocks (e.g., to establish the sampling frequency). Most non-physical noise sources are
dependent on the computer’s workload, etc. As such, the behavior of almost all noise
sources is dependent on some set of entropy-relevant parameters. We suggest that
these requirements be changed to require that the vendor produces a list of all such
entropy-relevant parameters, require stable behavior of the entropy/noise source for
fixed entropy-relevant parameters, and then separately require assessment across the
expected range of entropy-relevant parameters (e.g., across a temperature / voltage /
process characteristics envelope). The final assessed min entropy value would then be
the smallest assessed value for any entropy-relevant parameter tested. In the absence
of such a requirements change, almost no commercially produced noise / entropy
sources would be capable of passing these requirements.

9. For Section 4.4.1 (the Repetition Count Test), there is no upper bound for 𝐶𝐶, which
renders this health test ineffective at obtaining any particular security benefit. With the
current requirements set, vendors can always claim that 𝛼𝛼 = 0 (or arbitrarily close to this
value), and then vacuously claim to have this test in place. We recommend that you
apply the equivalent requirement imposed by Section 4.5 to this test; requirement (a)
from Section 4.5 would impose an upper bound of 𝐶𝐶 ≤ �100

𝐻𝐻
�. The following should be

added to accomplish this: “𝛼𝛼 shall be chosen so that 𝐶𝐶 ≤ �100
𝐻𝐻
�.”

10. For Section 4.4.2 (the Adaptive Proportion Test):
a. The description of the cutoff value isn’t precise. It should say “Mathematically, C

is the smallest integer that satisfies the following equation”, where the new text
is bolded.

b. Using Excel functions as the sole descriptor of how parameters are calculated
seems inappropriate (though, we have no objection to including these for
reference). Please describe the CRITBINOM function as the compositional
inverse of the CDF for the relevant binomial distribution.

The cutoff calculation isn’t correct (though it is close). By the construction of the
test, the first symbol has already been produced, and thus must necessarily have
been observed (i.e., there is no possibility of zero of these symbols being
observed). The count of the number of these symbols can then be bounded
using the binomial distribution, with 𝑊𝑊 − 1 (not 𝑊𝑊) trials. Thus, the formula in
footnote 10 should be 𝐶𝐶 = 2 + CRITBINOM(𝑊𝑊 − 1,power�2, (−𝐻𝐻)�, 1 − 𝛼𝛼). This
has a series of small effects on Table 2, which should be as below (updated
values are bolded).

Table 1

Binary Data
W=1024

Non-Binary Data
W=512

Entropy Cutoff
Value C

Entropy Cutoff
Value C

0.2 941 0.5 411
0.4 841 1 311
0.6 748 2 178
0.8 664 4 63
1.0 590 8 14

c. There is no upper bound for 𝐶𝐶, which renders these test requirements ineffective

at obtaining any particular security benefit. With the current requirements set,

 10/15/2018
8

vendors can always claim that 𝛼𝛼 = 0 (or arbitrarily close to this value), and then
vacuously claim to have this test in place. We recommend that you apply the
equivalent requirement imposed by Section 4.5 to this test. Requirement (b) from
Section 4.5 would impose an upper bound for 𝐶𝐶 for each entropy value. The
following text should be added to accomplish this: “C shall be chosen so that, if
the entropy source degrades so that it produces only half of the expected
entropy, the probability of false accept for this test is less than 50% after
examining 50,000 consecutive samples.”

Such a bound for 𝐶𝐶 can be calculated as follows: there are 𝑇𝑇 = �50000

𝑊𝑊
� trials, and

we need the eventual probability of non-detection to be less than 50%. Thus, if
we call the probability of a single test not finding a failure under these conditions
𝑝𝑝nd, then we have the cutoff value 𝑝𝑝nd

𝑇𝑇 < 2−1, so we need
𝑝𝑝nd < 2−1 𝑇𝑇⁄ .

The relevant calculation for this maximum cutoff is then based on the per-trial
probability of not detecting this low entropy condition, in terms of the probabilities
of the k distinct symbols in the degraded noise source, 𝑝𝑝𝑖𝑖. We denote the family
of per-symbol binomial probabilities in terms of the binomial CDF function
(BCDF) as 𝑐𝑐𝑖𝑖 = BCDF(𝑊𝑊 − 1, 𝑝𝑝𝑖𝑖, 𝐶𝐶 − 2), whence

𝑝𝑝nd = � 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖
1≤𝑖𝑖≤𝑘𝑘

.

Let A be an index of a most likely symbol. We can produce trivial bounds for 𝑝𝑝nd
by noting that 𝑐𝑐𝑖𝑖 ≤ 1, so

𝑝𝑝nd ≤ 𝑝𝑝𝐴𝐴𝑐𝑐𝐴𝐴 + � 𝑝𝑝𝑖𝑖
1≤𝑖𝑖≤𝑘𝑘
𝑖𝑖≠𝐴𝐴

= 1 − 𝑝𝑝𝐴𝐴(1 − 𝑐𝑐𝐴𝐴).

We seek a 𝐶𝐶 so that 𝑝𝑝nd ≤ 1 − 𝑝𝑝𝐴𝐴(1 − 𝑐𝑐𝐴𝐴) < 2−1 𝑇𝑇⁄ , thus satisfying requirement (b)
from Section 4.5. Simplifying, we are left with the inequality

𝑐𝑐𝐴𝐴 < 1 −
1 − 2−1 𝑇𝑇⁄

𝑝𝑝𝐴𝐴
.

This inequality is satisfied when

𝐶𝐶 ≤ CRITBINOM�𝑊𝑊 − 1, 2−
𝐻𝐻
2 , 1 −

1 − 2−1 𝑇𝑇⁄

2−
𝐻𝐻
2

� + 1.

A corresponding table similar to SP800-90B’s Table 2 would then be as follows:

Table 2

Binary Data
W=1024

Non-Binary Data
W=512

Entropy Max
Cutoff
Value C

Entropy Max Cutoff
Value C

0.2 972 0.5 450
0.4 914 1 386
0.6 858 2 281
0.8 804 4 148
1.0 754 8 40

 10/15/2018
9

11. For Section 5.2.1

a. In step #1, 𝑒𝑒𝑖𝑖,𝑗𝑗 should instead be 𝑒𝑒𝑖𝑖,𝑗𝑗 = 𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 �
𝐿𝐿
2
�. (The existing statement neglects

the floor operation).
b. In step #2, the procedure isn’t completely specified. The document should

indicate how symbols with equal 𝑒𝑒𝑖𝑖,𝑗𝑗 should be sorted so that the estimator is fully
specified (otherwise, a range of outputs is possible, depending on how symbols
with equal expected values are sorted). One possibility (which is what we
implemented in our tool) is to sort the symbols primarily on the expected value,
and secondarily (lexicographically) sort on the tuple value.

12. For Section 5.2.2
a. In step 1 of the first list in this section, 𝑐𝑐𝑖𝑖 is calculated as a count of that symbol in

all the data, including any data that is discarded in step 1 of the second list of this
section. When 𝑒𝑒𝑖𝑖 is calculated by dividing 𝑐𝑐𝑖𝑖 by 10, the resulting expectation will
be too high in the case where both 𝐿𝐿 is not divisible by 10 and that symbol was
present in the discarded data. To correct this, either set 𝑒𝑒𝑖𝑖 = (𝑐𝑐𝑖𝑖 𝐿𝐿⁄)⌊𝐿𝐿 10⁄ ⌋ or
create the 𝑐𝑐𝑖𝑖 values by counting symbols in the first 10⌊𝐿𝐿 10⁄ ⌋ elements of the
input data.

b. In step 2 of the first list in this section, this again isn’t fully specified for the same
reason as in comment #11b. (What sort is correct when the expected values are
equal?)

13. For Section 6.3.3, it’s regrettable that the multi-bit Markov estimator (which was present
in the last draft) was removed. This estimator seemed to provide meaningful insight to a
variety of systems and was reasonably well behaved so long as adequate data was
provided.

14. For Section 6.3.5 (the t-tuple estimate), what if there is no such t? The estimator is
inconclusive in this instance, and the estimator specification should indicate what to do
when this condition occurs.

15. Comment withdrawn. In the MultiMMC Prediction Estimate, maxEntries is a per-length
bound on the number of counters, not a global value across all word lengths (as is the
case with the LZ78Y Prediction Estimate). In the MultiMMC Prediction Estimate, if a new
postfix comes after a known prefix, the corresponding counter is not created when the
number of counters is already maxEntries, whereas in the LZ78Y Prediction Estimate,
encountering a known prefix always results in incrementing some value in the dictionary
for the observed postfix (even after maxDictionarySize prefixes are encountered). These
distinguish the two prediction estimates.

16. For section 6.3.4, there is a typo in the function definition of 𝐺𝐺(𝑧𝑧). The Hagerty-Draper
paper’s description [HD] of this sum (equation 4.35) makes it clear that the sum should
be taken over all the symbols in the test group (that is, the symbols after those used to
build the dictionary); the outer sum should have the same number of terms as the testing
group, ⌊𝐿𝐿/𝑏𝑏⌋ − 𝑑𝑑. As such, the upper bound for this sum should be ⌊𝐿𝐿/𝑏𝑏⌋.

17. For section 6.3.10
a. Algorithm step 3.a.i.2, when initializing the prefix �𝑠𝑠𝑖𝑖−𝑗𝑗−1, … , 𝑠𝑠𝑖𝑖−2�, one should

initialize all postfix values to 0, not just the current postfix (𝑠𝑠𝑖𝑖−1), as if the same
prefix reoccurs at a later index, say at �𝑠𝑠𝑖𝑖′−𝑗𝑗−1, … , 𝑠𝑠𝑖𝑖′−2� = �𝑠𝑠𝑖𝑖−𝑗𝑗−1, … , 𝑠𝑠𝑖𝑖−2�, the
test for this prefix will succeed (in step 3.a.i/3.a.ii), and the corresponding postfix
entries will be incremented in step 3.a.ii, without 𝐷𝐷�𝑠𝑠𝑖𝑖′−𝑗𝑗−1, … , 𝑠𝑠𝑖𝑖′−2�[𝑠𝑠𝑖𝑖′−1]
necessarily having been initialized.

 10/15/2018
10

b. Algorithm step 4 uses C, but C is not defined earlier in the algorithm. Between
steps 3c and 4, insert, “Let C be the number of ones in the array ‘correct.’”

18. For section 5.1.11, this use of bzip2 isn’t well specified, as there are several parameters
to BZLIB. In particular, the “blockSize” and “workFactor” parameters should be specified.

19. For section 6.3.2, step 7 provides a formula for 𝐹𝐹(1 𝑧𝑧⁄). We have restricted the Collision
Estimate to binary inputs, so now there is no need to represent the 𝐹𝐹 function at this
level of generality. When the upper incomplete gamma function’s first parameter is a
positive integer, it can be represented as a polynomial scaled by some elements that
cancel in our function (see https://dlmf.nist.gov/8.4#E8 for details). For the current test,
this simplifies to 𝐹𝐹(𝑧𝑧) = 2𝑧𝑧3 + 2𝑧𝑧2 + 𝑧𝑧.

20. For section 6.4, an alternate method to reduce the number of symbols is to partition the
output “symbol space” into 𝑚𝑚 contiguous intervals such that the number of observed
symbols is roughly equal in each interval; label these intervals from 0 to 𝑚𝑚 − 1. To
translate, map each symbol to the interval label for the interval that contains the raw
symbol. This approach identifies sets of untranslated symbols that are nearby each other
and is particularly useful if large scale changes are more significant than the low level
noise (e.g., a nice quantum source making large scale changes, as compared to low
level electrical noise). This approach was discussed at the 2016 Random Bit Generation
Workshop.

3 Results with Uniform Data
Here is a summary of the results of the testing that we’ve performed within in our acceptance
testing for the statistical tests described in the SP800-90B-final document.

For all these tests, we use data output from the Intel RDRAND instruction, which uses an AES-
128 CTR_DRBG (so it should be fairly statistically ideal, and any problems we see are likely due
to test construction issues).

3.1 Estimating Min Entropy

3.1.1 Non-IID Overall Assessments
The first set of graphs are histograms of the assessed entropy under the non-IID track for data
of various bit lengths. Each of these assessments was done on data sets of 1,000,000 samples.

For the binary case, we performed 1,000,000 distinct assessments (each using a distinct data
set). For all the other cases, we performed 30,000 distinct assessments per data width (each
using a distinct data set). Recall, also, that the binary-case involves more estimators, so the
binary results have a somewhat different meaning than the other results.

 10/15/2018
11

Figure 3

It would appear that this non-IID assessment process works reasonably well up to 8-bit
symbols, and not very well for 16-bit symbols. (This last finding is clearer when reviewing the
results of the individual estimators).

Figure 5 shows the median of the assessment divided by the bit length. (Recall that the non-IID
assessment for 1-bit symbols involves more estimators, so the results are not strictly
comparable with the other values.)

0.6 0.7 0.8 0.9

OVERALL 1 bit

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

OVERALL 2 bit

3.0 3.2 3.4 3.6 3.8

OVERALL 4 bit

5.5 6.0 6.5 7.0 7.5 8.0

OVERALL 8 bit

9 10 11 12 13

OVERALL 16 bit

 10/15/2018
12

We can also supply per-estimator information if you desire, but the “top level” numbers seemed
most interesting in this case.

3.1.2 IID Overall Min Entropy Assessment
The IID entropy assessment is limited to the result of the Most Common Value estimate.

For the binary case, we performed 1,000,000 distinct assessments (each using a distinct data
set). For all the other cases, we performed 30,000 distinct assessments per data width (each
using a distinct data set).

We provide the histograms for the IID assessment track below.

 10/15/2018
13

Figure 4

In general, the median of the distribution of assessments is reasonably close to full entropy in
each assessment, other than in the very-wide symbol case, where inadequate data makes the
estimator perform oddly. Figure 5 shows the median of the assessment divided by the bit length.

3.1.3 Interpretation of Min Entropy Estimates
The non-IID track involves more estimators than the IID track, and so can detect more types of
defects in the data produced by the noise source. As a consequence of using more estimators,
the overall assessment (which is the minimum of any particular estimator’s assessment) is

0.991 0.992 0.993 0.994 0.995 0.996

MCV 1 bit

1.984 1.986 1.988 1.990 1.992 1.994

MCV 2 bit

3.965 3.970 3.975 3.980

MCV 4 bit

7.83 7.84 7.85 7.86 7.87 7.88 7.89 7.90

MCV 8 bit

14.0 14.1 14.2 14.3 14.4

MCV 16 bit

 10/15/2018
14

expected to decrease. As such, we expect there to be a reduction in the assessed entropy from
the IID case to the non-IID case.

Further, increasing the number of symbols present in the data (𝑘𝑘) while keeping the number of
samples examined constant is expected to similarly decrease the assessment for most of the
estimators.

As such, the data presented in Figure 5 is consistent with the behavior of any similar
assessment process. Both assessment tracks seem to perform as expected.

Figure 5. Assessment Percentage (IID and Non-IID)

An alternate presentation of the multi-bit IID assessments is in Figure 6; in Figure 6, the blue
regions depict the observed range of assessments.

5 10 15
Bits

85

90

95

100
Percentage

AssessedMedianPercentage

Non IID
IID

 10/15/2018
15

Figure 6

3.2 Restart Sanity Check
We conducted each test under one of three entropy hypotheses:

1. full entropy (the “FullEnt” series), which is the correct assumption for this data,
2. the median IID assessment (the “IIDMedianEnt” series), reflecting what we’d expect for a

near-ideal source under the IID assessment strategy, or
3. the median non-IID assessment (the “MedianEnt” series), which is what we’d expect for

a near-ideal source under the non-IID assessment strategy.

For each variant of the restart sanity check that we examined, we conducted 100,000 restart
sanity checks per data width / entropy assumption tuple.

3.2.1 Original Restart Sanity Check
As mentioned above, the stated probability equality (which is described as equivalent to the
calculation of the p-value) is invalid, so we don’t expect the distribution of the p-values
calculated in this way to be uniformly distributed. If this test were completely reasonable, we
would expect the corrected p-values3 to be uniformly distributed in the interval [0,1], but this was
not the result that we observed. None of these parameters produce the desired uniform
distribution of p-values, which suggests that the underlying test construction is flawed.

Having said that, the proportion of failures is still reasonable for some conditions, as seen in the
following graph.

3 The p-values calculated using the formula provided in Section 3.1.4.3 can be corrected using the
function 𝑝𝑝value = 1 − �1 − 𝑃𝑃(𝑋𝑋 ≥ 𝑋𝑋max)�2000.

 10/15/2018
16

Figure 7

The most technically meaningful failure rate here is the “FullEnt” track, as that reflects the
appropriate assumption for the tested data. This assumption also best shows the problems in
this test construction. We anticipate somewhat better behavior in actual testing, as the end
entropy assessments for the IID and non-IID tracks produce reduced entropy estimates.

For at least the non-IID assessment strategy, these tests appear to be reasonable to apply on
data up to 8 bits wide. The non-IID assessment strategy would be expected to commonly fail
this test for larger multi-bit samples (1.2% failure rate for 1-bit data, 1.7% failure rate for 2-bit
data, 6.5% failure rate for 4-bit data, 32.4% failure rate for 8 bit data, 25.1% failure rate for 16-bit
data).

3.2.2 Corrected Simulated Cutoff Restart Sanity Check
For this evaluation, the original test was used (so each test produces a maximum of the count of
the per-row/column most likely symbols), but with fixed cutoffs. The cutoffs used for this test
were found through simulation of 2,000,000 rounds of single 1000-sample tests (equivalent to a
single row or column test) with a targeted per-test 𝛼𝛼 = 0.000005. The cutoffs used are described
in the following table (along with the binomial / original cutoffs for reference):

ExpectedFailureRate
FullEnt
MedianEnt
IIDMedianEnt

 10/15/2018
17

Table 3

Min Entropy Series Simulated
Cutoff

Binomial /
Original
Cutoffs

0.852803 MedianEnt 625 623
0.995319 IIDMedianEnt 572 571
1 FullEnt 572 570
1.86565 MedianEnt 343 338
1.9908 IIDMedianEnt 317 314
2 FullEnt 318 312
3.75695 MedianEnt 118 113
3.97586 IIDMedianEnt 105 100
4 FullEnt 104 99
7.41556 MedianEnt 23 19
7.87995 IIDMedianEnt 20 16
8 FullEnt 19 15
13.2812 MedianEnt 6 3
14.3163 IIDMedianEnt 5 3
16 FullEnt 4 3

We see above that the simulated cutoffs consistently produce a slightly higher bound than the
purely binomial case (these binomial bounds were incorrectly applied to the original version of
this check, and are also applied to the corrected binomial check).

The corrected simulated cutoff sanity checks display the expected rates with the same test
construction as originally specified (but with updated cutoff values).

Figure 8

5 10 15
Bits

0.002

0.004

0.006

0.008

0.010

Corrected Simulated Cutoff Restart Sanity Check Failure Rate

ExpectedFailureRate
FullEnt
MedianEnt
IIDMedianEnt

 10/15/2018
18

3.2.3 Corrected Binomial Restart Sanity Check
In the corrected binomial version of the Restart Sanity Check, the symbol that is most common
for the full 1,000,000 sample data set is established, and then only this most common symbol is
counted for each of the column / row counts. This removes the impact of the number of symbols
on the test (we now expect a binomial distribution), but leaves the non-independence defect of
the row / column count statistics. As a result, the distribution of the resulting p-values still isn’t
particularly uniform looking, but the proportion of tests passing is well behaved for all symbol
widths tested.

Figure 9

3.2.4 Comments on the Restart Sanity Check
The original test specified is flawed, and will lead to a higher than desired failure rate for all
data. Certain types of noise sources would fail at only slightly elevated rates, but due to the
catastrophic result of a failure, it is vital to get this test “right”.

The two correction proposals that we offer both resolve the main issues with the restart sanity
check, but they accomplish these in different ways.

The corrected simulated cutoff version attempts to find reasonable bounds on a per-evaluation
basis. A variant of this would be to find the exact cutoff, under the “worst case” assumption of
the symbol probabilities described above, also on a per-evaluation basis. This requires that the
lab/test tool performs some modest simulation or statistical calculations prior to conducting the
restart sanity check.

5 10 15
Bits

0.002

0.004

0.006

0.008

0.010

0.012

Corrected Binomial Restart Sanity Check Failure Rate

ExpectedFailureRate
FullEnt
MedianEnt
IIDMedianEnt

 10/15/2018
19

The corrected binomial sanity check is easier to model statistically, but the power of the
resulting statistical testing seems reduced.

3.3 Tests of the IID Assumption
We tested the permutation test, chi-square tests, and length of the longest repeated substring
tests independently. They all failed roughly as commonly as expected, and most appear to be
reasonably constructed.

3.3.1 Permutation Tests
The construction of the permutation tests doesn’t allow for calculation of a p-value directly, but
we can examine the percentile of the permutation test reference data result within the full
permutation test result data set. This data reflects a shortcut procedure (described on github by
the user “zipnemud” here), wherein each permutation test is short circuited once the number of
values above and below the reference value is suitably high to guarantee a pass of the
permutation tests).4

These results reflect 5402 permutation tests on each data width.

In this testing, the “Length of Directional Runs” test and “Length of Runs Based on Median”
permutation tests, the resulting percentile distributions departed significantly from the expected
uniform distribution for all data widths we tested. Below, we show some representative
histograms (the others have the similar “spikey” style distributions).

Figure 10

Despite these irregularities, the permutation tests had failure rates that were near the expected
rates.

In the figure below, we show the observed permutation test failure rates for various symbol
sizes, along with the expected failure rate for all the tests (under the hypothesis that each test is
independent, and each test has a failure rate of 1/1000), and a marked “Elevated Failure Rate”
(under the hypothesis that each test is independent, and each test has a failure rate of 2/1000).

4 We mention this, because this short-circuiting will have some result on the distribution of percentiles that
we present here (but no impact on the proportion of permutation tests that pass!).

https://github.com/usnistgov/SP800-90B_EntropyAssessment/pull/41

 10/15/2018
20

Figure 11

3.3.2 Chi-Square Tests
We conducted over 111,000 tests for each data width, and most of the new Chi-Square tests
(both for Independence and Goodness-of-Fit) performed quite well. The exception was the Chi-
Square Independence test on wide data which, for datasets of 1,000,000 samples, simply didn’t
have sufficient data to be well behaved. All the other tests performed quite well (the distribution
of the p-values from these tests are fairly uniform!). The histogram for the one problematic test
(performed on 10-bit-wide data samples) is shown below.

Figure 12

This suggests that for this data set size (1,000,000 sample data sets), the data should be on the
order of 8 bits or less (surely less than 10 bits).

3.3.3 Length of the Longest Repeated Substring Test

The LRS test also produces p-values, so we can also assess the distribution of the resulting p-
values.

5 10 15
Symbol Bits

0.01

0.02

0.03

Failure Probability
Failure Rate of Permutation Testing

ObservedFailureRate
ExpectedFailureRate
ElevatedFailureRate

 10/15/2018
21

These results reflect over 154,000 LRS tests on each data width.

Figure 13

This distribution is clearly non-uniform, so something is a bit amiss, but the pass rates are
reasonable for all the tested data widths.

 10/15/2018
22

Figure 14

As these test failure probabilities are well below the expected test failure rate, this test seems to
perform reasonably for all data lengths tested.

4 Modeled vs Statistically Assessed Min Entropy
In this section, we simulate and model various styles of sources. The output of the simulated
sources is statistically analyzed. This work is a larger-scale version of DJ Johnston’s 2017 work
using NIST’s reference python implementation (which is based on the draft 2016 document). [J
2017]

All results are with respect to the non-IID tests. For each parameter setting, the results depicted
reflect 100 tests of 1 million samples each, and a single test of 100 million samples (the “large
block assessment”). Blue regions show the range of assessments. Green regions reflect
modeling range.

For all of these tests, we construct the referenced source based on data that ultimately comes
from the Intel RDRAND instruction, which uses an AES-128 CTR_DRBG (so it should be fairly
statistically ideal).

4.1 Simple Noise Sources
We start by examining a simple biased bit source. As we vary the probability of producing a ‘0’
symbol, the resulting assessed entropy is depicted in Figure 15.

2 4 6 8 10
Symbol Bits

0.0002

0.0004

0.0006

0.0008

0.0010

FailureProbability
FailureRateof LRSTesting

ExpectedFailureRate
ObservedFailureRate

 10/15/2018
23

Figure 15

When we instead produce correlated / anti-correlated bits so that

Pr�𝑋𝑋𝑗𝑗 = 𝑎𝑎|𝑋𝑋𝑗𝑗−1 = 𝑎𝑎 � =
(𝑐𝑐 + 1)

2
,

we then find the results in Figure 16.

Figure 16

 10/15/2018
24

If we take a Gaussian noise source sampled by an 8-bit ADC, we find a somewhat more
complicated result, depicted in Figure 17.

Figure 17
For each of the sources in this section, these are all actually either IID sources, or models
where the dependency can be easily teased out by the 90B statistical tests. As such, we would
be surprised if the tools overestimate the entropy in these cases.

In general, the statistical assessments seem to be well behaved and generally track the actual
min entropy in a pleasing way.

4.2 Perturbed Simple Noise Sources
In these cases, a simple noise source (which we saw is assessed reasonably well) is processed
or combined with some additional signal.

We first examine the assessments of a fixed Gaussian source that has some periodic signal
added to the random process. We would expect to encounter this when the underlying noise
source has electronic design or implementation problems (e.g., insufficient grounding,
insufficient power source, etc.) The results of such perturbation is depicted in Figure 18.

 10/15/2018
25

Figure 18

If we take the output of a Gaussian source (of varying standard deviation), and process the data
through a simple LFSR, we find the results in Figure 19. This is directly comparable to Figure
17.

 10/15/2018
26

Figure 19

The graphs in this section show us that the addition of small, wholly deterministic variations
induce substantial overestimates of entropy. As such, it is vital to test only raw data, and to filter
out any extraneous signals that are not due to the underlying unpredictable process.

The analysis of the LFSR-conditioned data shows that any conditioning, even if conceptually
simple, makes establishing a lower bound for the min entropy via statistical testing impossible.

4.3 More Complicated Noise Sources
In this section, we review a few practical systems that are associated with very commonly
fielded noise sources. In these graphs, the green region depicts the range of modeled min
entropy.

We first examine noise sources that are reasonably well modeled using the SUMS (Step Update
Metastable Source) model. This includes the noise source underlying the Intel RdSeed and
RdRand source. We use the model as described by [HKM 2012].

Here, we fix the right step size to 0.1, and vary the left step size, which is consistent with the
approach used by Johnston. [J 2017]

 10/15/2018
27

Figure 20

We then examine the results of modeling and statistically assessing the output of a single ring
oscillator, which is periodically sampled. Here, we simulate and model a ring oscillator whose
nominal frequency is 1 GHz (with a fixed per-data-parameter period distributed normally about 1
ns, with standard deviation of approximately 0.04% of this value), sampled at 1 MHz (these
values allow for calculation of the per-sample-period accumulated jitter, based on the per-
oscillator-period jitter). Figure 21 shows the modeled and statistically assessed min entropy, as
we vary jitter. The accumulated per-sample-period jitter is depicted, presented as a percentage
of the ring oscillator period. For this figure, we assume that an attacker cannot predict any
portion of this jitter.

 10/15/2018
28

Figure 21

For both of these noise sources, the underlying models are now somewhat complicated, and
can return a range of entropy values for each parameter. The statistical testing results generally
lie within the expected modeled ranges, but the lower end of the modeled range is the value
that ought to be used for entropy assessment; this is lower than the value produced by the
SP800-90B tests, which suggests that with practical sources, the vendor’s assessment of the
entropy (𝐻𝐻submitter) is of vital importance.

4.4 Practical Considerations for Non-Ideal Noise Sources
If we try to account for variation that is present, but predictable (as in [BLMT 2011]), then we
must try to tease out which parts of the variation are due to local Gaussian noise (and are thus
un-guessable by any reasonable attacker) and which parts of the variation are due to switching
noise, power noise, and any other noise that is fundamentally predicable by any attacker with a
sufficiently detailed understanding of the particular noise source design and implementation.

If we take the results of [BLMT 2011] and credit 30% of the standard deviation as being
unpredictable (and assume that the attacker can guess the remaining component), then we
have a more substantial problem. No statistical test on the output of such a design can
distinguish between the predictable variation and unpredictable variation, so under this
assumption set, it isn’t reasonable to rely on the results of statistical testing to establish a lower
bound for min entropy production. This situation is depicted in Figure 22.

 10/15/2018
29

Figure 22

Here we see that a particular statistical assessment corresponds to a range of possible jitter
percentages, each having distinct min modeled min entropy rates. In this circumstance, if the
jitter percentage and proportion of observed jitter attributable to local Gaussian noise can be
determined, then the lower bound of the modeled region should be used as the vendor’s
𝐻𝐻submitter estimate.

The relationship between overall jitter percentage and the median of the statistically assessed
entropy (across many tests) is reasonably stable in simulated oscillators, so one could deduce a
lower bound for the per-sample jitter percentage from the statistical testing results. Using this
relationship (so long as one can estimate the percentage of observed jitter that is due to local
Gaussian noise), one could also back into an 𝐻𝐻submitter estimate using a combination of the
modeled and statistical results, as follows:

1. Run statistical testing on a large sample of output from the ring oscillator, and use these
results to establish a lower bound for the overall per-sample jitter percentage.

2. Use the estimated lower bound for the overall per-sample jitter percentage, 𝜎𝜎, and the
expected proportion of this jitter standard deviation due to local Gaussian noise, 𝑔𝑔, to
estimate the per-sample jitter percentage that is due to local Gaussian noise, 𝑔𝑔𝑔𝑔, and
then use this parameter within a ring oscillator model, 𝐻𝐻model_min(𝑔𝑔𝑔𝑔). This model
produces a lower min entropy bound appropriate for use as 𝐻𝐻submitter.

 10/15/2018
30

We depict an approach to arriving at min-entropy bounds in Figure 23; in this graph, the cyan
region depicts the ideal modeled min entropy range, the red curve is the statistical assessment
lower bound, the blue curve is the statistical assessment upper bound, and the green region
depicts the modeled min entropy range where only 30% of the observed jitter is local Gaussian
jitter (and is thus unpredictable to an attacker). In this diagram, we depict the case where the
statistical tests indicate a result of 0.7 bits of min entropy per bit.

For the corrected model / statistical lower bound, we first follow this statistical result value
horizontally until it intersects with the statistical assessment upper bound (they meet at a jitter
value of approximately 22.4%), and then vertically down, to the reduced jitter modeled lower
bound (approximately 0.0844 bits of min entropy).

For the corrected model / statistical upper bound, we follow this statistical result value
horizontally until it intersects with the statistical assessment lower bound (they meet at a jitter
value of approximately 37.7%), and then vertically down, to the reduced jitter modeled lower
bound (approximately 0.152 bits of min entropy).

Figure 23

 10/15/2018
31

4.5 Overall Observations
The statistical testing results for a particular source form a distribution; for more complicated
sources, this distribution tends to be wider. Single results aren’t very meaningful, as they don’t
provide insight into the underlying statistical result distribution.

The underlying source of uncertainty needs to be well understood and (to the degree possible)
directly sampled. When the output of the noise source is influenced by processes that are
predictable (for a sufficiently informed attacker), this influence should either be filtered out prior
to statistical analysis, or some sort of model-based correction should be applied. If perturbed
data is directly analyzed, the resulting min-entropy assessment is likely to be artificially high.

The statistical tests seem to do a good job of assessing simple noise sources, but have more
trouble at providing a lower bound for more complicated noise sources. For complicated noise
sources, the statistical testing results generally reflect values within the modeled min entropy
envelope, but these statistical testing results often don’t conservatively estimate the noise
source min entropy. This suggests that the assessment of non-trivial non-IID sources should be
further reduced below the value produced through statistical assessment.

5 References
[BLMT 2011] Baudet, Lubicz, Micolod, and Tassiaux. On the security of oscillator-based random
number generators. Journal of Cryptology, April 2011, Volume 24, Issue 2.

[BBFV 2010] Bochard, Bernard, Fischer, and Valtchanov. True-Randomness and Pseudo-
Randomness in Ring Oscillator-Based True Random Number Generators. International Journal
of Reconfigurable Computing, Vol. 2010.

[HKM 2012] Hamburg, Kocher, and Marson. Analysis of Intel’s Ivy Bridge Digital Random
Number Generator.

[HD] Patrick Hagerty and Tom Draper. Entropy Bounds and Statistical Tests.
https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop-
2012/documents/hagerty_entropy_paper.pdf

[J 2017] Johnston, David. STS-2.1.2 and SP800-90B Assessment Suite Anomalous results.
https://github.com/dj-on-github/90B_check

[SP800-90B] Turan, Barker, Kelsey, McKay, Baish, and Boyle. Special Publication 800-90B:
Recommendation for Entropy Sources Used for Random Bit Generation. January 2018.

https://github.com/dj-on-github/90B_check

	NIST Special Publication 800-90B Comments
	1 Introduction
	2 Comments
	3 Results with Uniform Data
	3.1 Estimating Min Entropy
	3.1.1 Non-IID Overall Assessments
	3.1.2 IID Overall Min Entropy Assessment
	3.1.3 Interpretation of Min Entropy Estimates

	3.2 Restart Sanity Check
	3.2.1 Original Restart Sanity Check
	3.2.2 Corrected Simulated Cutoff Restart Sanity Check
	3.2.3 Corrected Binomial Restart Sanity Check
	3.2.4 Comments on the Restart Sanity Check

	3.3 Tests of the IID Assumption
	3.3.1 Permutation Tests
	3.3.2 Chi-Square Tests
	3.3.3 Length of the Longest Repeated Substring Test

	4 Modeled vs Statistically Assessed Min Entropy
	4.1 Simple Noise Sources
	4.2 Perturbed Simple Noise Sources
	4.3 More Complicated Noise Sources
	4.4 Practical Considerations for Non-Ideal Noise Sources
	4.5 Overall Observations

	5 References

