Network Security

A Quick Overview

Joshua Hill josh-web@untruth.org http://www.untruth.org

Security Engineering

 What is "Security Engineering"?

 "Security Engineering is about building systems to remain dependable in the face of malice, error or mischance." -- Ross Anderson

Goals

- What are the goals of security engineering?
 - Depends on system
 - Traditionally things like: confidentiality, data integrity, entity authentication, message authentication, signatures, authorization, validation, access control, certification, timestamping, witnessing, receipt, confirmation, ownership, anonymity, non-repudiation, revocation, assurance...

Assurance: What you say?

- Security
 - Actual resistance to attack
 - What sort of attack?
 - What sort of attacker?
 - Complex to quantify (intangible)
- Assurance
 - Degree of belief that "Security" level is correct.
 - Also intangible

Snake Oil, Inc.

- Ridiculous claims
 - "One Time Pad!"
 - "1,000,000 bit keys!"
 - "Completely Unbreakable!"
 - "Revolutionary!"
 - "Inverse N-dimensional permutation matrix routed through the exhaust manifold and the main deflector dish, with a twist of lemon."
- No assurance at all.
 - Secret/Unevaluated/Under-evaluated systems

Assurance for Dummies

- (Competent) Peer Review
- Standards Compliance
 - Common Criteria
 - FIPS PUBS
 - FIPS 140-2, FIPS 180-2, FIPS 186-2...
- "Good Practice"
- Independent Evaluation

OK... So Now What?

- How can the general system security goals be satisfied in reasonable (verifiable/quantifiable) ways, particularly in distributed settings?
 - Generally a Hard Problem $^{\rm TM}$
 - Good understanding of the problem and security engineering is important

Security Engineering Patterns

- Simplicity
- Complete Mediation
- Separation of Privilege
- Least Privilege
- Least Common Mechanism
- Defense in Depth
- Open Design
- Auditability
- Physiological Acceptability

Auditability

- Policy
 - CONOPS
 - Security Policy
 - Corporate
 - Network
 - Design Documentation
- Procedure
 - Administration

Network Security Policy

- What are the Security Domains?
 - What are the rules for each domain?
 - What connections are allowed?
 - What sort of information exchange is permitted?
 - How can security domains interact?

NSP Application

- How can it be applied?
 - Architecturally
 - Network Design should make domains natural
 - Device/Host configuration should be consistent with NSP
 - Enforcement of the NSP
 - Firewalls
 - Verification of the NSP
 - IDSes
- Where?
 - Most critical at Security Domain Boundaries

Network Design

- Ethernet Hubs
 - 1 Collision Domain / 1 Broadcast Domain
 - No security benefit
- Ethernet Switches (Normal)
 - Multiple Collision Domains / 1 Broadcast Domain
 - Limited security benefit
- Ethernet Switches (VLAN)
 - Multiple Collision / Broadcast Domains
 - Limited security benefit
- Routers
 - Multiple Collision / Broadcast Domains
 - Multiple independent segments
 - Reasonable security segmentation

Firewalls

- Stateless (basic packet filter)
 - Complex rulesets
 - Simplest design
 - Least granularity
- Stateful
 - Basic
 - Understands some underlying protocols
 - More symbolic (generally simpler) rulesets
 - Moderate Complexity
 - Proxy
 - Most control over traffic
 - Most complex
 - Understands all protocols in use

IDSes

- Host based
 - Analysis of host logging information
- Network based
 - Network monitoring (sniffing)
 - "Interactions" with switches

Common Failures

- Switches as security devices
- Incorrectly placed firewalls
- Misplaced trust in IDSes
- Logging trauma
- Lack of understanding of underlying protocols

Trust Management

- System design in terms of trust
- Extending trust
 - Policy/Procedures
 - Laws/Regulation
 - Technical Solutions

Technical Measures

- Cryptography can help
- Has primitives to help establish
 - Confidentiality
 - Data integrity
 - Authentication
 - Non-repudiation

Cryptographic Primitives

- Random number generation
- Stream ciphers
- Block ciphers
- Public key encryption
- Cryptographic hash functions
- MACs
- Public key signatures

Trust Extension

- Each primitive has a set of attributes
- Primitives are used in a Security Protocol
- Security Protocol can be used to extend trust in various ways

SSL/TLS

- Client has:
 - CA public certificate
 - Possibly client certificate
- Server has:
 - Server certificate
- Trust relationships
 - Client and Server trust CA
 - Client Trusts Real Server
 - Server may trust Client
- Trust is extended through
 - RNGs, Hashes, PK Signatures, PK encryption, Block (or stream) ciphers, MACs

IPSec/IKE

- Endpoints have
 - Authentication data (various sorts)
- Trust relationships
 - Endpoints trust each other
 - Endpoints trust authentication data (and associated infrastructure)
- Trust is extended through
 - RNGs, Hashes, MACs, Block Ciphers
 - "Other Stuff" for IKE

There and Back Again

A Packet's Tale

- VPNs attempt to emulate trusted connections
 - Can encapsulate complete packets
 - Can provide confidentiality, data authentication
 - Virtual "trusted piece of wire"

Crypto-Modules

- Offer crypto-in-a-box
- Can be more secure than "integrated crypto"
 - Smaller
 - More fully evaluated
 - Can be leveraged to make big, complex systems more secure

Quantifying Security

- What sort of attackers?
 - How well funded are they?
 - What resources do they have access to?
 - How risk adverse are they?
 - How much time do they have?
 - Where in the system do they start?
 - What expertise/information do they have?

Attacker Modeling

- Computationally unbounded (IT model)
- Computationally bounded
- Monetarily / Time bounded

General Analysis

- Risk Analysis
- Attack Trees

Summary

- Security is Hard
 - It is intangible
 - It is complex
 - Its goals are difficult to define
- Assurance is often ignored
- There are several Techniques to help
- Network security is even more hard and complex