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 Birthday Problem

In the birthday problem, we have a group of n randomly selected people. If we assume that birthdays are
uniformly distributed among the 365 days of the year (which we’ll later call “buckets”), then what is
the chance that any people in the group share a birthday with each other?

Directly calculating this probability is obnoxious, but we can calculate the probability of this event using
the probability of the complement of this event; namely, we calculate the probability of no two people
sharing the same birthday (which is the complement of the situation we care about) and subtract this
probability from 1. This (under the appropriate convention for the binomial coefficient) is
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It’s fairly clear that if you have 366 people in the room, then (by the pigeonhole principle) you are
guaranteed to have at least one shared birthday (and, indeed, the above formula captures this behavior!)
The surprising thing is that the likelihood grows quite quickly: for n D 47, the probability of a shared
birthday is slightly greater than 95%, and n D 23 is the first to make a shared birthday more likely than
not. Figure  shows how quickly this probability grows.

 The Birthday Paradox in Cryptography

In cryptography, we are oen interested in the instance where some random process (which is either a
deterministic process that we are modeling as random, or a literal random process) happens to produce
the same output as some prior output, which in this setting is called a collision. This is another application
of the classic birthday paradox, but generally with more possible “buckets”.

We’ll ignore the vulgarities of the actual calendar such as leap years, leap seconds, various conventions for the calendar,
etc. We further assume that cows are spherical, and of uniform density.

Making use of the laws of noncontradiction and excluded middle.
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Figure : Probability of a Shared Birthday

If we consider the case where there are m buckets and n outputs, we can slightly abstract the above
calculation and find that the probability of at least one collision is
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If we need to actually do calculations, then large quantities for n or m make the above calculation im-
practical, but this gives us a hint as to how to proceed.

 Approximation

We develop a standard approximation for the above by first remembering that
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For ease of notation, we’ll denote
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,

which (by the above) tells us that "x D e�x C x � 1.

Some calculus shows us that "x is non-negative, and is an increasing function when x > 0.

One way of interpreting Equation () is that

1 � x D e�x
� "x , ()

The analogous closed form 1 �
.m

n/�nŠ

mn is also true, but it is generally impractical to make calculations based on this form
of the equation.
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and so for values of x very close to 0 we see that "x � 0, so we can approximate 1�x � e�x . If we apply
this approximation to Equation (), we arrive at
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For ease of notation, we’ll denote
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which is our approximation of the probability of there not being a collision.

We were operating under the assumption that our approximation is reasonable, but we’d like some better
idea as to how good the approximation is for actual values of m and n. For this, denote xk D k=m:
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The step yielding Equation () is based on some calculus, and the behavior of the terms being multiplied
together, given the possible values of xk . The sign change in Equation () tells us that the Pr.collision/ �

1 � A; in order to properly bound the probability of collision, we need to include the contribution of ".
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Together, Equations () and () allow us to bound the probability of a collision given arbitrary input
parameters, namely
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We could bound the probability of collision as being less than p by bounding
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Taking the log of both sides, we find
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Equation () is readily verified for various parameter settings using a computer algebra system.

 Collision of Blocks

In some circumstances, we have the case where collisions are in some sense “binned”, that each choice
could collide with some fixed number of other choices. Conceptually, mapping a random output
through any non-injective function could elicit such a situation, but we also encounter this situation
in more natural settings. In this case, we’ll describe the bin size as b. Happily, this proceeds in much
the same way as the above. First note that in terms of exact calculation, we have
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Equation () gives the equivalent formulation as Equation (), but perhaps Equation () gives a better
intuitive notion of what is going on. This shows us that in the case that we are concerned with block
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collisions, we have exactly the same situation as the non-block case, but the number of buckets is the
ratio m=b.

As the exact calculation takes this form, we can naturally use the same approximation that we have
already developed by replacing the term m with the ratio m=b.

 A Note on Conditional Probability

We occasionally encounter situations where we have already done the work necessary to calculate the
probability of a birthday collision aer n outputs into two collections of buckets (where each collection
has a possibly different number of buckets) and we then want to consider a setting where these are
combinatorially combined. For example, imagine that we have two random processes, the first of which
outputs a 16-bit value and the second of which outputs an 8-bit value. Using the above development, it’s
easy to calculate the probability of collision for each aer 26 outputs (indeed, this can be accomplished
with no need to approximate, given a modern computer). One can directly do the same for a 24-bit
value.

Table : Independent Events: A Non-Example
(n D 26)

m Pr.collision/

28 p8 D 0:99982

216 p16 D 0:030303

224 p24 D 0:000120156

We know that the axiom of conditional probability tells us that if we have two events A and B , then

Pr.A \ B/ D Pr.AjB/ � Pr.B/,

which, in the case that A and B are independent, gives the very useful

Pr.A \ B/ D Pr.A/ � Pr.B/ (when A and B are independent.)

Observe that p24 ¤ p8 � p16, so the probability of collisions are not independent. The reason for this is
somewhat clearer once one considers the example of two single-bit quantities.

Aer three outputs, each single-bit quantity is guaranteed to collide with some past output (there are,
aer all, only two possible buckets!), but a single two-bit quantity only has a 62:5% chance of colliding
aer 3 outputs. We need more than both collisions happening for some output, they must collide on the
same output.

The conclusion we should draw from this is that we can’t simply multiply chances of collision together
and expect to get something sensible out, because these events are not independent.

We’ll try to avoid including the time measurement “fortnights” in any calculations featuring this ratio of “buckets per bin”.
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 Motivating Examples

In each of the following examples, we use Equation () to find the maximal integer value of ` so that
if, for a given value of m, aer n D 2` outputs, the probability for a collision is less than some given
maximum probability bound for a collision, p.

. CBC or OFB Modes With AES and DES

In  mode, information about the underlying plaintext leaks in the event that the cipher outputs
a previously output value. In  mode, such a collision causes the complete compromise of all data
encrypted aer that collision.

If we model  and  as random maps, then we can directly apply the material we have just developed
to find out how many ciphertexts can be output before the probability of producing a collision becomes
higher than some bound. For  (which has a -bit block size), we let m D 264 and for  (which
has a -bit block size), we let m D 2128.

Table : Maximum Number of Encryptions for  and  in  or  mode
Algorithm p

2�1 2�20 2�32 2�40

 232 222 216 212

 264 254 248 244

. IPSec with GCM

  provides a way of using   mode within ec’s Encapsulating Security Payload (),
so long as key agreement is handled using “an automated key management system”, commonly  or
v. For this section, we assume that  or v are being used.

In  Special Publication -, there must be a chance of less than 2�32 that any particular  
is re-used with a particular key. For all calculations that follow in this section, we thus set p D 2�32,
unless otherwise explicitly stated.

In this use, the   is always a -octet (-bit) value. The first part of the   is the “salt”, a -
octet value that is created using the same   process that produces the session keys for the security
association; for this analysis, the salt and the session key are modeled as randomly distributed. We refer
to each set of independent  (or v) security associations as a key context; each key context has a
particular (fixed) key and salt. The last part of the   is an -octet  , which is set in one of three
ways:

. A counter with a fixed starting point.

. A counter with a randomly generated starting point.

. A randomly generated value for each message.
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For completeness, we also provide an analysis for the case where four of the octets of the   are fixed
to some ID associated with the sender (e.g., the sender’s IP) in order to comply with   - IG
A. (dated //).

.. Fixed Starting Point

With a fixed starting point, one necessarily collides in the event that the key and salt collide, so the size
of the colliding bitstring is the key length plus  bits for the salt. As such, we have the results in Table
.

Table : Allowable Key Contexts (Fixed Starting Point Bounds)
Key Length Key Contexts

128 264

192 296

256 2128

In this case, the size of the counter does not affect the collision bounds but does limit the number of
possible messages within a single key context. As such, encoding the device’s ID into the   doesn’t
affect the number of allowable key contexts that can be used for the given collision probability bound,
but does make it so that the number of allowable key contexts applies only on a per-module basis. The
resulting number of messages per key context limits here are at most 264 messages for implementations
that use the full -octet   as a counter, and 232 messages for implementations using 4 of the  
octets to encode an ID (leaving the remaining 4 octets to encode the counter.)

.. Randomly Generated Starting Point

With a randomly generated starting point, you get the benefit of being able to guarantee no collision
of the   within a fixed key context, along with some added resistance to collision provided by the
random starting index. To establish how much added collision resistance we get, we need to first limit
the number of messages that can be encrypted within a particular key context; this is a tunable parameter,
so we examine a few reasonable settings for the number of messages per key context, which we’ll call T .

When you choose a starting point for the  , x, you not only exclude all the   selections up to
x C T (which could be used within this key context) but also those starting aer x � T (as selecting
one of these could eventually cause a collision). We thus exclude at most 2T   selections for each
choice (thus b D 2T ). As a special case, if there is effectively no limit on the number of messages, then
T D 264 in the case where 8 octets are used for the counter, and T D 232 in the instance where 4 octets
are used for the counter. (In this ”no limit” case, we have made it so that when a key and salt collision
happen, then there will be a full   collision).

In order for the tuple (Key,  ) to collide, we must have a simultaneous collision of the key and salt,
then additionally encounter a block collision. As a sample calculation of the number of buckets for a
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128-bit key and a maximum of 232 messages per key context, we have

m D

 key‚…„ƒ
2128

�

Salt‚…„ƒ
232

�

(Binned) Counter‚…„ƒ
264

2 � 232
D 2128C32C31

D 2191.

Table : Allowable Key Contexts (Random Starting Point Bounds)
Key Length Max Encrypts per Key Context (T)

216 232 248 264

128 288 280 272 264

192 2120 2112 2104 296

256 2152 2144 2136 2128

If we effectively do not limit the number of messages per key context (and allow the full 264 distinct
encryptions), this approach is equivalent to the case where we have a fixed starting point (this column
has the same results as in Table ).

If, in response to   - IG A., we fixed  octets of our   by setting them to a device-specific
identifier (e.g. the device IP), then there are only thirty-two bits of counter le to be randomly assigned.
As such, we surely couldn’t encrypt more than 232 messages, and we are le with the bounds described
in Table .

Table : Allowable Key Contexts (Random Starting Point Bounds, Compliance with IG A.)
Key Length Max Encrypts per Key Context (T)

216 232

128 272 264

192 2104 296

256 2136 2128

This modification results in a reduction of both the allowable key contexts, and the total messages that
can be encrypted within a single key context. The advantage of this approach is that it makes each 
 device specific.

.. Randomly Generated Per-Message ESP IVs

In ec, the first four octets of the   are fixed within a key context, so there are only eight octets
available to be randomly set within a fixed key context. In order to maintain the desired per-key-context
collision bound of 2�32, we must restrict to at most 216 messages within a fixed key context.

In the event that a key-context collision has occurred (i.e., a particular key and salt combination have
been used again), the total collision probability would surely rise above our bound, so we are then again
le with the situation addressed already in Table .
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.. Attacker Model

An attacker who wants to be prepared to attack a system using  in this way will be forced to dedicate
some amount of computational and storage resources in order to notice that a collision has occurred.
There are two basic approaches: an attacker can monitor within a particular key context, or an attacker
can monitor across multiple key contexts which (in the case where the address is not encoded into the
 ) could take place over any device capable of communicating using  with ec.

Attackers monitoring for collisions within a fixed key context need to store all the data within that
particular key context. As the only approach outlined above susceptible to this style of attack is the
random per-message   approach, the attacker would have to store at most 216 messages, each of
which requires storage of at least 9 � 23 octets (a -octet   and a -octet ciphertext must both
be stored) and at most roughly 232 octets (for IPv) or 216 octets (for IPv). Within a key context,
duplication of the sent   implies a full (Key,  ) collision, so an attacker just needs to compare
the   on at most 216 messages.

For an attacker to have a 2�32 chance of success, they must then be willing to store 219 to 248 octets
(roughly . MB to  TB), with a practical maximum being approximately  GB (for attackers not
dealing with IPv implementations that support jumbograms). Looking for collisions within this data
set requires at most 216 operations, so this is an overall modest effort.

Attackers monitoring for collisions across multiple key contexts have a harder time. They can again
watch for collisions within the -octet  , but this reveals relatively little. In practice, comparison
of these  s may require substantial computation (given the scale of the numbers involved), but for
the purpose of this analysis, we assume that establishing if a particular   has been seen before is a
computation that can occur in O.1/ operations (e.g., using the  model, a table lookup or optimal
hash table lookup). We also assume that the attacker can establish if there has indeed been a (Key,  )
collision in O.1/ operations once the   matches. Importantly, the number of operations an attacker
needs to perform is never less than the number of messages gathered for an attack, as each additional
message requires some processing to check if the   has re-occurred, and if so then to check if this is
an example of a (Key,  ) collision.

For example, if an attacker monitors 264 distinct key contexts, each with 216 messages in them, then the
attack has a work factor of 280 computations. These results are summarized in Table . All the attacks
summarized in Table  have a probability of success of 2�32; for comparison, the key exhaustion attacks
with this probability of success have a computational work factor of 296 for a 128-bit  key, 2160 for a
192-bit  key, and 2224 for a 256-bit  key.

A more reasonable estimation of the effort required for an attack would be the the attacker’s expected
resource use for a successful attack; for this, we examine the case of a probability bound of p D

1
2
. These

results are summarized in Table .

All the attacks summarized in Table  have a probability of success of 2�1; for comparison, the key
exhaustion attacks with this probability of success have a computational work factor of 2127 for a 128-
bit  key, 2191 for a 192-bit  key, and 2255 for a 256-bit  key.

For Tables  and , attacks with no computational advantage over the relevant key exhaustion attacks are
greyed out. Within these tables, the stated computational bounds can be converted to storage bounds
(in octets) by adding a storage factor to each exponent; this storage factor is between 3 (associated with
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attacks on data streams containing only the smallest possible messages) to 32 (associated with attacks on
data streams containing only the largest possible messages).

Table : Attack Computational Cost (p D 2�32)
Key Length Max Encrypts per Key Context

216 232 248 264

Fixed Starting Point

128 280 296 2112 2128

192 2112 2128 2144 2160

256 2144 2160 2176 2192

Random Starting Point

128 2104 2112 2120 2128

192 2136 2144 2152 2160

256 2168 2176 2184 2192

Random Starting Point (A.)

128 288 296 N/A N/A
192 2120 2128 N/A N/A
256 2152 2160 N/A N/A

Randomly Generated Per-Message  

128 280 N/A N/A N/A
192 2112 N/A N/A N/A
256 2144 N/A N/A N/A

If an attacker is interested in finding a collision for one particular key context (and can thus discard data
when it is found not to be related to the desired key context), then the amount of storage is dramatically
reduced, but so is the attacker’s chance of success. In order to benefit from a birthday style collision, the
attacker must be able to in some sense retain all the data they have seen, which (as seen above) imposes
a massive storage and computational cost.

.. Standards Details

Some of the above apparent options run afoul of various requirements or guidance. For what follows,
we adopt the language of  -. This document provides for two ways of constructing the
 , a deterministic construction (specified in Section ..) and a -based Construction (specified in
Section ..).

Deterministic Construction

Setting a fixed starting point for the   must be considered a deterministic construction of the 
. Setting a randomly generated starting point for the   and then incrementing from there may
also be considered a deterministic construction of the  . In this setting, the salt can be considered

In fact, the average cost per octet is best for the attacker when each message is largest!
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Table : Attack Expected Computational Cost (p D 2�1)
Key Length Max Encrypts per Key Context

216 232 248 264

Fixed Starting Point

128 296 2112 2128 2144

192 2128 2144 2160 2176

256 2160 2176 2192 2208

Random Starting Point

128 2119 2127 2135 2144

192 2151 2159 2167 2176

256 2183 2191 2199 2208

Random Starting Point (A.)

128 2103 2112 N/A N/A
192 2135 2144 N/A N/A
256 2167 2176 N/A N/A

Randomly Generated Per-Message  

128 296 N/A N/A N/A
192 2128 N/A N/A N/A
256 2160 N/A N/A N/A

as part of the fixed field. The salt does not uniquely identify the device, so to satisfy the requirements of
  - IG A., an additional  bits of the   must be fixed to some identifying information
(e.g., the device IP). This results in the invocation field being at most  bits.

The above analysis suggests that requiring this fixed identifier within the   does not substantially
affect the difficulty of launching an attack from a computational perspective (indeed, it makes it worse
in the randomly-set case); it does make it so that an attacker must gather a ridiculous amount of data
from one target, but this doesn’t seem wildly less practical than an attacker gathering an even more
ridiculous amount of data from a possibly vast number of targets. Fundamentally, the attacker must
store all this data somewhere, and the amount of data involved is several orders of magnitude beyond
anything available to all of humanity (the minimum storage for any of these attacks is on the order of 
yottabytes, or 1024 bytes), to say nothing of single (even well funded) attackers.

-based Construction

Starting with a randomly generated   value (and then incrementing from there) and setting the 
 randomly for each message can both almost be considered a ”-based Construction” of the  .
In this construction, the salt value must be considered part of the free field, as it is not generated using
an “approved  with a sufficient security strength”, does not get incremented along with the rest of
the random field as described in Paragraph  of Section .., and is fundamentally associated with the

Note that - does not appear to require encoding the address in case of ec with , as use of  in ec assures
that (as in paragraph  of Section ..) “a fresh key is limited to a single session of a communication protocol”, with probability
bound vastly better than 2�32.





key context, not the particular message. The remaining 64-bits of the   (that is, the  ) is thus
categorized as the random field. Unfortunately, even if this random field is generated by an approved ,
it is not sufficiently large to meet the requirements of  - Section .. (the random field is
required to be at least 96 bits by Paragraph  of Section ..).

If the   is considered suitably strong to be allowed to produce the session keys used in the ec
security associations, then it seems reasonable to consider its output as random-looking enough to make
up a portion of the random field. Similarly, though fixing a -octet portion of the random field does
make the discussed 232 message maximum the wrong bound for per-message randomly generated ran-
dom fields, we saw above that a message maximum of 216 yields the correct collision bound. In the
instance that random field is initially set randomly and then incremented, this maximum number of
messages has less significance.


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