
The - Problem

Joshua E. Hill
e-mail: josh-math@untruth.org

Initial Release: November , 
Current Revision: August , 

  
You walk into a - in Oregon (or any other mystical land where there
is no sales tax) and grab four items from the shelf. Right as you are
about to check out, the power goes off. The cashier indicates that it’s
no problem, as he has a calculator somewhere.

The cashier dusts off the calculator, and sets about totaling the four
items. He finishes with a flourish, and then pauses and says, “Now
that’s odd... the total is 7:11. Huh!”

You thoughtfully provide exact change, and as you are about to
leave, the cashier gets a panicked look on his face and stops you.

“I’m really sorry, but I didn’t total the products correctly! I acci-
dentally multiplied all the prices together instead of adding them!”

You sigh, and put the items back on the counter, and the cashier
again totals them up (making sure to use the “+” key this time). The
cashier finishes and then looks distressed again. He says “That’s odd!
The total is 7:11 again!”

Assuming that no additional errors were made in these two calcu-
lations and that no rounding occurred, what are the prices of the four
items?

 
The first thing that is important to note is that there are some restric-
tions: all the items must have a positive price, and that price must be
an integer number of pennies.

If you don’t make these assumptions, you don’t get a finite number
of answers. Indeed, these two relations in four unknowns yield a (-
dimensional) surface of valid answers in -dimensional space that looks

August ,  Hill

something like Figure . In this graph, each axis is one of the item
prices, and the fourth item’s price is a function of the other three prices.

0
100

200
300

400

0

100

200

300

400

0100200300400

Figure : Graph of (mainly non-integer) results

To obtain the answer with no rounding to the nearest penny, we
restrict ourselves to solutions that can be expressed as a positive integer
number of pennies: If the prices are a, b, c, and d , our two relations
are

aC b C c C d D 7:11

abcd D 7:11

Let’s instead look at the prices of the items in pennies: let A D

100a, B D 100b, C D 100c, D D 100d .

AC B C C CD D 711

ABCD D 711000000

.  
Prior to putting serious thought into this problem, we could simply
write a small program to solve it. We have two basic approaches:

• Additively by examining all four-element additive partitions of
711 and then look for values that multiply to 711; 000; 000.

• Multiplicatively by examining all four-element factorizations of
711; 000; 000 and then look for values that add to 711.

Page  of 

August ,  Hill

..    
We first iterate through every possible additive partition of 711 and
check for ones that multiply to 711; 000; 000. To remove solutions that
are simply reordering of other solutions, we demand that A � B �

C � D. This additive approach is described in Algorithm  (or Listing
 in Section ). It is very simple, but it is also the least efficient approach.
Algorithm : Additive Brute Force Approach

output: Integer Values A, B , C , D such that
ABCD D 711000000 and AC B C C CD D 711

A 1

while A � 708 do
B 1

while AC B � 709 and B � A do
C 1

while AC B C C � 710 and C � B do
D 711 � .AC B C C /

if D � C then
if ABCD D 711000000 then

return A, B , C , and D

end if
end if
C C C 1

end while
B B C 1

end while
A AC 1

end while
This program produces a correct answer in 808; 883 inner loops and

explores all the possibilities in 2; 506; 497 inner loops. If you haven’t
become jaded with the supercomputer that likely resides on your desk,
this sounds like an obnoxiously large calculation (but it resolves in less
than a tenth of a second on a modern day machine).

Are we done? This approach is fundamentally inefficient, because
it eventually explores each of the possible integer partitions of 711 into
exactly four item prices, and most of these aren’t really valid costs for
the items (as most of these elements do not divide 711; 000; 000). There
are two approaches once we realize this: we can change our prior pro-
gram to just check to see if each value is a divisor of 711; 000; 000, or we
can change the way that we enumerate so that we only get such values.

Page  of 

August ,  Hill

..    
Altering our first attempt so that each loop checks for divisibility is easy
enough, as seen in Algorithm  (or Listing  in Section ).
Algorithm : Additive Brute Force Approach (Try )

output: Integer Values A, B , C , D such that
ABCD D 711000000 and AC B C C CD D 711

A 1

while A � 708 do
if 711000000 is divisible by A then

B 1

while AC B � 709 and B � A do
if 711000000 is divisible by B then

C 1

while AC B C C � 710 and C � B do
D 711 � .AC B C C /

if D � C then
if ABCD D 711000000 then

return A, B , C , D

end if
end if
C C C 1

end while
end if
B B C 1

end while
end if
A AC 1

end while
This approach runs in only 3; 413 inner loops prior to finding the

answer, and would run only 10; 477 inner loops total if there were no
match. That sounds great, but it tests for divisibility (a “mod” oper-
ation) quite a large number of times; 4; 610 tests are required to get
the answer. On most architectures, the mod operation is rather slow
(e.g., approximately 32 times slower than multiplications on modern
Intel processors). This relative expensiveness of the mod operation is
also the reason that we don’t check to make sure the C and D are di-
visors of 711; 000; 000. We’d have the false economy of trading two
mod operations for five add/subtract operations, three multiplies and
two conditional jumps, which is generally a losing proposition. We do
check to make sure that A and B are divisors of 711; 000; 000, because
that check prunes entire loops at great savings.

Page  of 

August ,  Hill

..    
Every price must be a divisor of 711; 000; 000, that is must be of the
form 2i3j 5k79`, where 0 � i � 6, 0 � j � 2, 0 � k � 6, 0 � ` � 1.
We don’t want to find arbitrary divisors of 711; 000; 000, instead we
want to find only sets of divisors that multiply to 711; 000; 000.

One way to do this is to recursively try every possible selection of
such divisors, until it works out. Algorithm multRecA (or Listing  in
Section ) is such an approach.

Page  of 

August ,  Hill

Function multRecA
input : n (the number of terms le), d (the desired total),

fimax; jmax; kmax; `maxg

output: Returns “found” or “not found”. If “found”, the
found value is output

if n D 1 then
t 2imax3jmax5kmax79`max

if t D d then
Output t

return Found
end if

else
itry 0

while itry � imax do
jtry 0

while jtry � jmax do
ktry 0

while ktry � kmax do
`try 0

while `try � `max do
t 2itry3jtry5ktry79`try

if t � d � nC 1 then
if multRecA(n � 1, d � t ,˚
imax � itry; jmax � jtry; kmax � ktry; `max � `try

	
)

= found then
Output t

return found
end if

end if
`try `try C 1

end while
ktry ktry C 1

end while
jtry jtry C 1

end while
itry itry C 1

end while
end if
return not found

Page  of 

August ,  Hill

This approach is relatively simple, but not very efficient. It evalu-
ates , different choices for A, B , C , and D prior to completing (it
would evaluate 49; 482 different choices if there were no solution).

..    
The next approach is more complicated, but useful in better under-
standing the problem.

We first specify the recursive function at the center of this approach;
this is basically the same as in the prior approach, except that it ex-
cludes the possible factor of 79. The only clever restriction that we
make is marked “note ()” in the multRecB function (or Listing  in
Section ), which allows us to exclude selections that do not fulfill the
arithmetic/geometric inequality¹, which tells us that:�Pn

iD1 xi

n

�n

�

nY
iD1

xi

¹http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_
geometric_means

Page  of 

August ,  Hill

Function multRecB
input : n (the number of terms le), d (the desired total),

fimax; jmax; kmaxg

output: Returns “found” or “not found”. If “found”, the
found value is output

if n D 1 then
t 2imax3jmax5kmax

if t D d then
Output t

return Found
end if

else
if d n � 2imax3jmax5kmaxnn then /* note (1) */

itry 0

while itry � imax do
jtry 0

while jtry � jmax do
ktry 0

while ktry � kmax do
t 2itry3jtry5ktry

if t � d � nC 1 then
if multRecB(n � 1, d � t ,˚
imax � itry; jmax � jtry; kmax � ktry

	
) =

found then
Output t

return found
end if

end if
ktry ktry C 1

end while
jtry jtry C 1

end while
itry itry C 1

end while
end if

end if
return not found

Finally, we excluded the factor of 79 from the recursive step because
we assume that the first item price has this factor. The main portion of
the algorithm is in Algorithm  (or Listing  in Section ) thus looks
very much like the recursive step, but with an extra factor of 79.

Page  of 

August ,  Hill

Algorithm : Multiplicative Brute Force Approach II (main)
input : n (the number of terms le), d (the desired total),

fimax; jmax; kmaxg

output: Returns “found” or “not found”. If “found”, the
found value is output

itry 0

while itry � 6 do
jtry 0

while jtry � 2 do
ktry 0

while ktry � 6 do
t 2itry3jtry5ktry79

if t � 708 then
if multRecB(3, 711 � t ,˚
6 � itry; 2 � jtry; 6 � ktry

	
) = found then

Output t

return found
end if

end if
ktry ktry C 1

end while
jtry jtry C 1

end while
itry itry C 1

end while
return not found

This approach terminates aer trying 685 different choices for A,
B , C , and D. If there were no solution, this approach would evaluate
746 total different choices.

..    
You could also attempt to combine the multiplicative and additive ap-
proaches more completely. Fundamentally, we are interested in step-
ping through every possible divisor of 711; 000; 000 that is less than
711. This is effectively what the second additive approach is doing, but
quite inefficiently. Approaching this more explicitly, we can simply
enumerate each of the possible 61 divisors of 711; 000; 000 less than
711, and then step through them, as in Algorithm  (or Listing  in
Section ).

Page  of 

August ,  Hill

Algorithm : Additive Brute Force Approach
output: Integer Values A, B , C , D such that

ABCD D 711000000 and AC B C C CD D 711

array divs[61]
D f1; 2; 3; 4; 5; 6; 8; 9; 10; 12; 15; 16; 18; 20; 24; 25; 30;

32; 36; 40; 45; 48; 50; 60; 64; 72; 75; 79; 80; 90; 96; 100;

120; 125; 144; 150; 158; 160; 180; 192; 200; 225; 237; 240;

250; 288; 300; 316; 320; 360; 375; 395; 400; 450; 474; 480;

500; 576; 600; 625; 632g

iA 1

A divsŒiA�

while iA � 61 do
iB 1

B divsŒiB �

while AC B � 709 and iB � iA do
iC 1

C divsŒiC �

while AC B C C � 710 and iC � iB do
D 711 � .AC B C C /

if D � C then
if ABCD D 711000000 then

return A, B , C , and D

end if
end if
iC iC C 1

C divsŒiC �

end while
iB iB C 1

B divsŒiB �

end while
iA iA C 1

A divsŒiA�

end while
This approach finds the result in 350 (much quicker) inner loops,

and would perform at most 1; 628 inner loops if there were no solution.
Table  provides an approximate the run-time of each of these solu-

tions.

Page  of 

August ,  Hill

Table : Runtime for Approaches
Implementation Inner Loops Clock Cycles Normed Time

Additive I 808,883 68,294,499 170.64
Additive II 3,413 865,732 2.16
Additive III 350 400,225 1.00

Multiplicative I 9,844 9,006,862 22.50
Multiplicative II 685 537,159 1.34

.  
We could also attempt to solve this without a computer program, and
exclude choices through mathematical trickery.

Looking at the factorization of 711000000 D 263256791 we see that
it has only one factor of 79, so only one of the item prices can have a
factor of 79. Let’s call this item price A.

A � 708 D 711 � 3, as no item is free (as the product is non-zero).
This leaves us with the possible factorizations in Table .

Table : Options for A

Case A Added Multiplied
 A D 203050791 D 79 B C C CD D 632 BCD D 9000000

 A D 213050791 D 158 B C C CD D 553 BCD D 4500000

 A D 223050791 D 316 B C C CD D 395 BCD D 2250000

 A D 233050791 D 632 B C C CD D 79 BCD D 1125000

 A D 203150791 D 237 B C C CD D 474 BCD D 3000000

 A D 213150791 D 474 B C C CD D 237 BCD D 1500000

 A D 203051791 D 395 B C C CD D 316 BCD D 1800000

Some of these feel unlikely; let’s firm that up.

..  ,   
Cases (), () and () are summarized in Table .

Table : Options for A (Cases (), (), and ())
Case A Added Multiplied
 A D 233050791 D 632 B C C CD D 79 BCD D 1125000

 A D 213150791 D 474 B C C CD D 237 BCD D 1500000

 A D 203051791 D 395 B C C CD D 316 BCD D 1800000

Page  of 

August ,  Hill

The arithmetic/geometric inequality² tells us that:

1

n

nX
iD1

xi �

nY

iD1

xi

!1=n

(with equality when all the values are equal). We can apply this in-
equality and massage it a bit, giving us:�

B C C CD

3

�3

� BCD

Plugging in our values, we see that this excludes (), () and ().

..  ,   
Cases (), () and () are summarized in Table 

Table : Options for A (Cases (), (), and ())
Case A Added Multiplied
 A D 203050791 D 79 B C C CD D 632 BCD D 9000000

 A D 213050791 D 158 B C C CD D 553 BCD D 4500000

 A D 203150791 D 237 B C C CD D 474 BCD D 3000000

In cases (), () and (), A is not divisible by , so BCD must be
divisible by 56. At the same time, we see that BCCCD is not divisible
by , so at least one of the terms (say B) is not divisible by . This implies
that CD must be divisible by 56.

Taking D to be the larger exponent of the  term (or possibly equal),
we have D is divisible by 53, 54, 55 or 56. We can exclude 56 and 55

because they are larger than 711. D having a factor of 54 leaves at most
632 � 625 D 7 for B C C , but C would be at least 52 D 25 in this
instance, so this is a contradiction. So, we are le with the case where
both C and D are divisible by 125.

As such, we can describe B , C , and D as in Table  with the condi-
tions in Table .

Table : Form of A, B , and C in Cases (), (), and ()
B D 2i13j1 C D 2i23j253 D D 2i33j353

²http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_
geometric_means

Page  of 

August ,  Hill

Table : Restrictions for Cases (), (), and ()
Case i1 C i2 C i3 j1 C j2 C j3 B C C CD

 6 2 632

 5 2 553

 6 1 474

Note, neither j2 or j3 can equal , as that term would then exceed
632. If j3 D 1, then D D 3153 D 375, as any factor of  would make D

too large. We then see that j2 can’t be , as C CD would then exceed
632. We thus have two general cases to examine: the j3 D 1 case, and
the j2 D j3 D 0 case.

The j3 D 1 Case

Assume j3 D 1, so D D 3153 D 375. As previously mentioned, j2

can’t be .
So, in this case, we can describe B , C , and D as in Table , with the

conditions in Table .

Table : Form of A, B , and C in Cases (), (), and () (j3 D 1 Case)
B D 2i13j1 C D 2i253 D D 3153 D 375

We now adopt the convention that Bm is the value for B in case
.m/.

Continuing, we know that B1 D B2 D 2i13 and B5 D 2i1 . BCC �

257, so we can immediately conclude that C D 2i253 has at most one
factor of , as C would be greater than  otherwise. If C had exactly
one factor of , then C D 250, leaving B � 7, a contradiction (as
B � 24 D 16 in this instance). So, C D 125 and B has all the factors
of two.

We have determined that in this case D D 375, and C D 125. In
case () B1 D 263 D 192, so B1 C C CD D 692 ¤ 632, a contradic-
tion. In case () B2 D 253 D 96, so B2 C C C D D 596 ¤ 553, a
contradiction. In case () B3 D 26 D 64, so B3CC CD D 564 ¤ 474,
a contradiction.

None of these cases works, so it can’t be true that j3 D 1.

Page  of 

August ,  Hill

The j2 D j3 D 0 Case

We now examine the case where j2 D j3 D 0. That is, B has all the
 terms.

Table : Form of A, B , and C in Cases (), (), and () (j2 D j3 D 0

Case)
B D 2i13j1 C D 2i253 D D 2i353

As C and D are now interchangeable, we can assume that C has
the greater (or equal) power of .

First note that i2 � 2, as greater powers make C too large.

Case i2 D 2 (so C D 500): If i3 D 2 (thus D D 500), then C CD D

500 C 500 > 632, a contradiction. If i3 D 1 (thus D D 250),
then C C D D 500 C 250 > 632, a contradiction. If i3 D 0

(thus D D 125) then in cases () and () we have an immediate
contradiction, as C C D D 625, which is already larger than
the associated additive bounds ( for case () and  for case
()). For case () B1 D 2432 D 144, at which point B1 C C C

D D 769 ¤ 632, which is a contradiction. None of these options
worked, so i2 ¤ 2.

Case i2 D 1 (so C D 250): If i3 D 1 (so D D 250), then case () already
runs into problems as D C C D 500 > 474, a contradiction. In
case (), B2 D 2332 D 72, so B2 C C C D D 572 ¤ 553, a
contradiction. In case (), B1 D 2432 D 144 whence B1 C C C

D D 644 ¤ 632, a contradiction. If i3 D 0 (so D D 125)
we again get three cases. In case () B1 D 2532 D 288, then
B1 C C C D D 663 ¤ 632. In case () B2 D 2432 D 144,
whence B2 C C CD D 519 ¤ 553, a contradiction. In case ()
B5 D 253 D 96, whence B5 C C C D D 471 ¤ 474. None of
these worked, so i2 ¤ 1.

Case i2 D 0 (so C D 125): This forces D D 125. In case (), B1 D

2632 D 576, whence B1 C C C D D 826 ¤ 632. In case (),
B2 D 2532 D 288, whence B2 C C CD D 538 ¤ 553. In case
(), B5 D 2631 D 192, whence B5 C C CD D 442 ¤ 474. This
also doesn’t work.

As we have seen, none of these can occur, so we have excluded the
cases (), () and ().

Page  of 

August ,  Hill

..  
We are le with only case (), so A D 316 and B C C CD D 395.

52 does not divide B C C CD, so we know that 52 doesn’t divide
at least one of the terms, say B . 54 is greater than , so C and D can
have powers only up to 53. If both C and D had factors of 53, then
B D 395 � C � D would be divisible by 5, but this would then be a
contradiction (as all the factors of  were consumed by the C and D

terms). It must then be the case that B has a factor of 51, C has a factor
of 52 and D has a factor of 53.

D cannot have a factor of  (if it did, it could only be a factor of
31 and then D D 375, B C C D 20 and BC D 263153, so the arith-
metic/geometric inequality would give us B C C � 24

p
375 > 20, a

contradiction.)
As such, A, B , and C must be of the form in Table  subject to the

restrictions in Table .

Table : Form of A, B , and C in Case ()
B D 2i13j15 C D 2i23j252 D D 2i353

Table : Restrictions for Case ()
Case i1 C i2 C i3 j1 C j2 B C C CD BCD

 4 2 395 2250000

We can immediately conclude that i3 � 1, as any higher power of
 results in D > 395, so D is either  or .

To proceed, we set up some new variables: Let W D
D

125
, V D C

25

and U D B
5
. Plugging these into the sum and product equations in

Table , we see that we have the equations:

395 D B C C CD

D 5U C 25V C 125W

or
79 D U C 5V C 25W

and

2250000 D BCD

D .5U /.25V /.125W /

or
144 D U V W

Page  of 

August ,  Hill

We have already established that either W D 1 or W D 2 (corre-
sponding to D D 125 and D D 250, respectively).

If W D 2, then 29 D 5V C U and U V D 72 (and thus U D 72
V

).
Substituting in, we arrive at 5V 2 � 29V C 72 D 0, a quadratic poly-
nomial. The quadratic equation tells us that this equation has only
complex solutions, which is a contradiction (as V is complex, this cer-
tainly tells us that C D 25V is complex, and we demanded integer
solutions!)

Thus, W D 1 (so D D 125), which gives us 54 D 5V C U and
U V D 144 (and thus U D 144

V
). Substituting in, we arrive at 5V 2 �

54V C144 D 0, again a quadratic polynomial. The quadratic equation
gives us the solution V D 6 (thus C D 150/. (We can discard the root
associated with V D 24

5
, as this non-integer result would not yield a

value for C which is divisible by ). Plugging in, we find that U D 24,
thus B D 120.

So, the solution is A D 316, B D 120, C D 150, D D 125 (in
pennies), or a D 3:16, b D 1:20, c D 1:50, d D 1:25.

Page  of 

August ,  Hill

 : 

Listing : Additive Brute Force Approach I

#include <stdio.h>

int main() {
unsigned int A, B, C, D;

for(A=1;A<=708;A++)
for(B=1;A+B<=709 && B <= A;B++)

for(C=1;A+B+C<=710 && C <= B;C++) {
D = 711 - (A+B+C);
if(D <= C) {
if(A*B*C*D == 711000000) {

printf(”A: %u, B: %u, C:%u, D: %u\n”,
A, B, C, D);

return(1);
}

}
}

return(0);
}

Page  of 

August ,  Hill

Listing : Additive Brute Force Approach II

#include <stdio.h>

int main() {
unsigned int A, B, C, D;

for(A=1;A<=708;A++) {
if(711000000 % A != 0) continue;
for(B=1;A+B<=709 && B <= A; B++) {

if(711000000 % B != 0) continue;
for(C=1; A+B+C<=710 && C <= B; C++) {

D = 711 - (A+B+C);
if(D <= C) {

if(A*B*C*D == 711000000) {
printf(”A: %u, B: %u, C:%u, D: %u\n”,

A, B, C, D);
return(1);

}
}

}
}

}
return(0);

}

Page  of 

August ,  Hill

Listing : Multiplicative Brute Force Approach I

#include <stdio.h>

/*Integer power function, returns base^(exp)
Calculated using the standard square-and-multiply
method of exponentiation*/

unsigned int ipow(unsigned int base,
unsigned int exp) {

unsigned int result = 1;
while (exp) {

if (exp & 1)
result *= base;

exp >>= 1;
base *= base;

}

return result;
}

/* Takes factors = {i, j, k} returns 2^i 3^j 5^k 79^l*/
unsigned int unfactor(unsigned int *factors) {

return(ipow(2, factors[0]) * ipow(3, factors[1]) *
ipow(5, factors[2]) * ipow(79,factors[3]));

}

int tryVar(unsigned int termsLeft, unsigned int
desiredTotal, unsigned int *fList) {

unsigned int curTry[4];
unsigned int nextRound[4];
unsigned int total;
int i;

if(termsLeft == 1) {
total = unfactor(fList);
if(total == desiredTotal) {

printf(”n = 1, %u\n”, total);
return(1);

}
} else {

for(curTry[0]=0; curTry[0]<=fList[0]; curTry[0]++)
for(curTry[1]=0; curTry[1]<=fList[1];

curTry[1]++)
for(curTry[2]=0; curTry[2]<=fList[2];

curTry[2]++)
for(curTry[3]=0; curTry[3]<=fList[3];

curTry[3]++) {
total = unfactor(curTry);
if(total <= desiredTotal - termsLeft + 1) {

for(i=0; i<4; i++)
nextRound[i]=fList[i]-curTry[i];

if(tryVar(termsLeft-1,
desiredTotal-total,
nextRound)) {

Page  of 

August ,  Hill

printf(”n = %u, %u\n”, termsLeft,
total);

return(1);
}

}
}

}

return(0);
}

int main()
{

unsigned int fList[4] = {6, 2, 6, 1};

tryVar(4, 711, fList);

return 0;
}

Page  of 

August ,  Hill

Listing : Multiplicative Brute Force Approach II

#include <stdio.h>

/*Integer power function, returns base^(exp)
Calculated using the standard square-and-multiply
method of exponentiation*/

unsigned int ipow(unsigned int base,
unsigned int exp) {

unsigned int result = 1;
while (exp) {

if (exp & 1)
result *= base;

exp >>= 1;
base *= base;

}

return result;
}

/* Takes factors = {i, j, k} returns 2^i 3^j 5^k */
unsigned int unfactor(unsigned int *factors) {

return(ipow(2, factors[0]) * ipow(3, factors[1]) *
ipow(5, factors[2]));

}

int tryVar(unsigned int termsLeft,
unsigned int desiredTotal,
unsigned int *fList) {

unsigned int curTry[3];
unsigned int nextRound[3];
unsigned int total;
int i;

if(termsLeft == 1) {
total = unfactor(fList);
if(total == desiredTotal) {

printf(”n = 1, %u\n”, total);
return(1);

}
} else {

if(ipow(desiredTotal,termsLeft) >= unfactor(fList)*
ipow(termsLeft, termsLeft)) { //note (1)

for(curTry[0]=0; curTry[0]<=fList[0];
curTry[0]++)

for(curTry[1]=0; curTry[1]<=fList[1];
curTry[1]++)

for(curTry[2]=0; curTry[2]<=fList[2];
curTry[2]++) {

total = unfactor(curTry);
if(total <= desiredTotal - termsLeft + 1) {

for(i=0; i<3; i++)
nextRound[i]=fList[i]-curTry[i];

Page  of 

August ,  Hill

if(tryVar(termsLeft-1,
desiredTotal-total, nextRound))

{
printf(”n = %u, %u\n”, termsLeft,

total);
return(1);

}
}

}
}

}

return(0);
}

int main()
{

unsigned int fList[3] = {6, 2, 6};
unsigned int curTry[3];
unsigned int nextRound[3];
unsigned int total;
int i;

for(curTry[0]=0; curTry[0]<=fList[0]; curTry[0]++)
for(curTry[1]=0; curTry[1]<=fList[1]; curTry[1]++)
for(curTry[2]=0; curTry[2]<=fList[2];

curTry[2]++) {
total = 79 * unfactor(curTry);
if(total <= 708) {

for(i=0; i<3; i++)
nextRound[i]=fList[i]-curTry[i];

if(tryVar(3, 711-total, nextRound)) {
printf(”n = %u, %u\n”, 4, total);
return(1);

}
}

}

return(0);
}

Page  of 

August ,  Hill

Listing : Additive Brute Force Approach III

int main() {
unsigned int A, B, C, D;
unsigned int Aind, Bind, Cind;
unsigned int divs[61] =

{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20,
24, 25, 30, 32, 36, 40, 45, 48, 50, 60, 64, 72,
75, 79, 80, 90, 96, 100, 120, 125, 144, 150,
158, 160, 180, 192, 200, 225, 237, 240, 250,
288, 300, 316, 320, 360, 375, 395, 400, 450,
474, 480, 500, 576, 600, 625, 632};

for(Aind=0, A=divs[0]; Aind<61; Aind++, A=divs[Aind])
for(Bind=0, B=divs[0]; A+B<=709 && Bind<=Aind;

Bind++, B=divs[Bind])
for(Cind=0, C=divs[0]; A+B+C<=710 && Cind<=Bind;

Cind++, C=divs[Cind]) {
D = 711 - (A+B+C);
if(D<=C) {

if(A*B*C*D == 711000000) {
printf(”A: %u, B: %u, C:%u, D: %u\n”,

A, B, C, D);
return(1);

}
}

}

return(0);
}

Page  of 

August ,  Hill

Colophon
The text of this document is typeset in Jean-François Porchez’s won-

derful Sabon Next typeface. Sabon Next is a modern () revival of
Jan Tschichold’s  Sabon typeface, which is in turn a adaptation of
the classical (in all meanings) Garamond typeface, which dates from
the early th century.

Equations are typeset using the MathTime Professional II (MTPro)
fonts, a font package released in  by the great mathematical expos-
itor Michael Spivak. These fonts are designed to work with the Times
typeface, but they blend well with most classical fonts.

Source listings are typeset in Microso’s Consolas, a monospace
font with excellent readability.

X ETEX was used to typeset the document, which is in turn offspring
of Donald Knuth’s profoundly important TEX. X ETEX was selected in
order to gain access to modern fonts without the trauma involved in
converting them to a representation that pdfTeX could deal with. This
approach makes most (though sadly, not all) OpenType features avail-
able, and sidesteps the traditional limit of  glyphs per font.

Page  of 

