
Definition: Let C be a collection of nonempty sets (∅ ∉ C).  A choice function, f, is a 

function such that for all X ∈ S, f(X) ∈ X.  (Intuitively, we can choose a member from 
each set in that collection.) 
 
Axiom of Choice (AoC):  Every family of nonempty sets has a choice function. 
The AoC was formulated by Zermelo in 1904. 
 
Note: The axiom is non-constructive.  It guarantees the existence for a choice function, 
but gives no indication how to make such a function.  Because of the non-constructive 
nature of the axiom, and some of the fairly non-intuitive results of the axiom, it didn't 
gain broad acceptance until quite recently.  In 1940, Kurt Gödel proved that (as long as 
the pre-existing axioms were without contradiction) adding the axiom of choice did not 
lead to a contradiction with the axioms of von Neumann-Bernays-Gödel set theory (a 
statement is true in ZF iff it is true in NBG). In 1963, Paul Cohen demonstrated that 
adding the negation of the axiom of choice to ZF also leads to no contradiction 
(assuming, once again that the ZF axioms were consistent to begin with), thus the AoC is 
independent of Zermelo-Fraenkel set theory. 
 
The axiom gets its name not because mathematicians prefer it to other axioms. 
    — A. K. Dewdney  
 
The ZF axioms, with the addition of the AoC, are referred to as ZFC. 
 
In general, the AoC is required in order to make arbitrary choices from a family of sets.  
There are a few specific instances [1] where the AoC is not necessary to accomplish this 
task: 

• If each set in the family is a singleton. 
• If there are only finite sets in the family (induction on the number of sets in the 

family suffices to show that selection can occur for any finite number of sets) 
• If each X ∈ S contains only a finite number of ordered (distinguishable) items, 

(e.g., f(X) = the least element of a finite set) 
 
Russell phrased it as this: If we have ℵ0 null pairs of shoes, then we can select on shoe 
from each pair without the axiom of choice (just choose the left shoe for each pair).  But, 
if we had ℵ0 pairs of socks, then we need the axiom of choice to pick one from each set 
(because socks are not distinguishable from each other). 
 
The AoC has many equivalent statements [2].  A few of the most compelling are: 

• For any relation R there is a function F ⊆ R, with domain(F) = domain(R) 
• The Cartesian product of a non-empty family of non-empty sets is non-empty. 
• For any two sets C and D, C  D or D  C (i.e., the cardinality of any two sets is 

comparable) 
 



The AoC is also equivalent to a very non-intuitive theorem, known as the Well-ordering 
theorem.  For this theorem, we'll need some additional definitions (that we'll use later, as 
well) 
 
Definition A binary relation < is a partial-ordering of a set S if for all p, q, r in S: 
 p p</  (< is irreflexive) 
 If p < q and q < r then p < r (< is transitive) 
 

Remark: Texts differ as to whether a partial-ordering is defined to be like the real 
number relation < or .  In this case, we follow the convention of [1], [2], and [4], 

and use a strict partial ordering (i.e., < is irreflexive rather than reflexive).  [3] and 
[5] use a reflexive partial ordering (based on ).  In all cases, the texts quite 

reasonably use a symbol for the relation that suggests the real relation similar to 
their convention. 

 
Definition A binary relation < is a total-ordering (or linear-ordering) of a set S if 
 (S, <) is a partial-ordering. 
 for all p, q in S, p < q or p = q or q < p 
 
Example: A good example of a partially ordered set is ℘({1, 2, ..., n}) under the relation 

of ⊂ ("proper subset").  A set is never a proper subset of itself, and the relation is 
transitive.  In addition, this is not a total-ordering, as {1,2},{3,4} ({1,2,..., })n∈℘ , 
but{1,2} {3,4}⊂/  and {3,4} {1,2}⊂/ . 
 
Definition An element a ∈ X is the least element of X if ( )x X a x∀ ∈ ≤  
 
Definition A binary relation < is a well-ordering of a set S if 
 (S, <) is a total-ordering. 
 Every subset of S has a least element 
 
Example: Any subset of the positive integers is a well-ordering under the standard "<" 
operator (by the Well Ordering Principle of the integers). 
 
Zermelo's Well Ordering Theorem: Every set can be well ordered. 
Prooflet:  
Let A be a set.  In order to show that A can be well ordered, we will first show that we 
can arrange the elements of A into a (possibly transfinite) sequence, { }:aα α θ∈  (where 

α and θ are ordinal numbers) that enumerates A.  Let f be a choice function from the set 
of non-empty subsets of A (the existence of such a choice function is guaranteed to exist 
through the AoC). 
Now apply transfinite induction: 



If A is non-empty, let α = 0 (i.e. the first ordinal). ( )0a f A=  (if not, then we are done, as 
any relation produces a well-ordering on an empty set!).  Continue advancing through the 
ordinals, letting { }( ):a f A aα ξ ξ α= − <  until { }:A aξ ξ α− <  is empty.  We are 

guaranteed to run out of set members prior to running out of ordinals by Hartogs' 
Theorem [2] (i.e., for every set, there is an ordinal with cardinality larger than the 
cardinality of our set).  Note, by construction of { }:aα α θ∈ , A aα

α θ∈

=∪  and 

( ), a aα βα β θ α β∀ ∈ ≠ ⇒ ≠ . 
 
Given the sequence { }:aα α θ∈ , we will define our relation as follows: 

( ), a aα βα β θ α β∀ ∈ < ⇔ < .  This is a well ordering, (through the well ordering of the 
ordinals). 

 
 
Proposition Zermelo's Well Ordering Theorem is equivalent to the Axiom of Choice. 
Assume Zermelo's Well Ordering Theorem. 
Let S be a family of non-empty sets.  All sets are well ordered, so 

A S

A
∈
∪ is well-ordered, 

and can be enumerated as a (possibly transfinite) sequence.  Define our choice function 
( )f A  as the least element of A as defined by our sequence. 
 

 
Note: Banach-Tarski Paradox: Using the AoC, it is possible to take the 3-dimensional 
closed unit ball, and partition it into finitely many pieces, and move those pieces in rigid 
motions (i.e., rotations and translations, with pieces permitted to move through one 
another) and reassemble them to form two copies of B.  (Note, the pieces of the ball are 
not Lebesgue measurable.) 
 

Banach and Tarski had hoped that the physical absurdity of this theorem would 
encourage mathematicians to discard AoC. They were dismayed when the 
response of the math community was `Isn't AoC great? How else could we get 
such counterintuitive results?' 

 
Another statement called Zorn's Lemma is also equivalent to the AoC.  We again require 
some additional definitions: 
 
Definition An element a ∈ X is a maximal element of X if ( )x X a x∀ ∈ </ . 
Note: This maximal element is not guaranteed to be unique.  In the trivial case, the empty 
set can be used as a relation that makes every element of the set "maximal". 
 
Definition A set X is a chain if it is totally ordered. 
 



Definition: An element a ∈ X is a upper bound for P⊂X if ( )p P a p∀ ∈ </ . 
 
Zorn's Lemma: If (X, <) is a nonempty partially ordered set such that every chain in X 
has an upper bound, then X has a maximal element. 
Note: In the interest of time, I have chosen a short (but vacuous) proof Zorn's lemma (it 
amounts to an appeal to the really, really big, and is very similar to the proof for the well 
ordering theorem).  There are other perfectly reasonable proofs of Zorn's lemma, but they 
are lengthy affairs; see [3] for a possibly more satisfying proof. 
Prooflet: 
The general construction that we follow is to construct a single chain (we'll represent this 
as a possibly transfinite sequence) in X that leads to a maximal element using a choice 
function, f, from ℘(X)-{∅} to X. 
 
Let ( )0a f X= .  Now, let ( )1 0{ }a f X a= −  such that a0 < a1.  (This can be thought of as 
making an arbitrary selection and then discarding those values that do not satisfy this 
condition; keeping track the members that have been discarded and those that have been 
kept, removing both sets of them from future selections). 
 
We proceed (i.e., applying transfinite induction) in this way until we run out of set 
members at some value aθ (once again, we are guaranteed to run out of set members prior 
to ordinals, as with the well-ordering theorem). 
 
Note, we have constructed a chain in X (relative to the provided ordering relation!) that 
has a maximal element aθ.  This element is a maximal element for the set X by 
construction. 

 
 
Proposition Zorn's Lemma is equivalent to the Axiom of Choice. 
Proof: 
Assume Zorn's Lemma. 
Let S be a family of nonempty sets. 
Let's consider a choice function on S.  Let P={f : f is a choice function on some Z ⊆S}.  

Note, (P, ⊂) is a nonempty, partially ordered set under the set, and each chain has an 
upper bound (each chain could certainly not be "larger" than S by construction), so P has 
an upper bound, which is S.  This upper bound is a choice function on S. 

 
 
Zorn's lemma (and thus the AoC) is used to prove several well known results: 
 => Every vector space has a basis 
 => Every field has a unique algebraic closure 



 <=> Tychonoff's Theorem: Any product of compact topological spaces is compact 
(Note: for compact Hausdorff spaces Tychonoff's Theorem is equivalent to the Boolean 
Prime Ideal Theorem (Rubin and Scott 1954) and hence weaker than the AoC.) 
 
More generally, the AoC is used in ZFC to prove: 
 => The countable union of countable sets is countable. 
 => The Baire Category Theorem (a weakened version of AoC is required here: 
The Axiom of Dependent Choice) 
 => Every infinite set has a denumerable subset 
 <= The Generalized continuum hypothesis 
 
The generalized continuum hypothesis (GCH) is not only independent of ZF, but also 
independent of ZF plus the axiom of choice (ZFC). However, ZF plus GCH implies the 
AoC, making GCH a strictly stronger claim than AoC. 
 
Q: What's sour, yellow, and equivalent to the axiom of choice? A: Zorn's lemon. 
 
The Axiom of Choice is obviously true, the well-ordering principle obviously false, and 
who can tell about Zorn's lemma? 
 - Jerry Bona  
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