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If you have a second order Cauchy-Euler differential equation 

( )2
2 1 0a x y a xy a y g x′′ ′+ + =  

you can convert this equation into a linear ODE with constant coefficients by making a 
substitution: ( ) tx t e= .  We can undo this substitution using ( ) lnt x x= .  It's clear how 
to use this substitution to get rid of the x  terms, but what of the derivatives? 
 
We start by noting that this differential equation is all in terms of x : 
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We want to convert our differential equation so that it is in terms of t  rather than x .  To 
do this, let's define a new version of the solution:  

( ) ( )( ) ( )ty t y x t y e= =  

Our new differential equation will be in terms of ( )y t  and its derivatives (which will be 
with respect to t ).  With this new version of the function, we can represent our original 
function: 

( ) ( )( ) ( )lny x y t x y x= =  

We can use these new functions to find out what dy
dx

 and 
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 in terms of ( )y t  and its 

derivatives: 
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(this is an application of the chain rule) 
 
We use this first derivative to calculate the second derivative: 
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For higher order equations, you can continue to apply this same process to find the higher 
derivatives. 
 
Summarizing:  
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Notice that these didn't depend on the particular differential equation; these work any 
time that you use this substitution. 
 
In the abstract, we can apply this directly to the general form: 
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So, one way to approach this class of problem is just to remember that the substitution 
yields: 
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This ODE now has constant coefficients, and can thus be approached by our standard 
methods.  Once we have a solution, ( )y t , we can apply the reverse substitution to get a 
solution for our original ODE: 
 

( ) ( )lny x y x=  



Section 4.7, problem 33 
 
As an example, look at the differential equation: 

2 210 8x y xy y x′′ ′+ + =  
 
Now, substitute into the differential equation (using what we found above!): 

( )
2

2 2 2
2 10 8t t t t td y dy dye e e e y t e

dt dt dt
− −⎡ ⎤⎛ ⎞ ⎛ ⎞− + + =⎢ ⎥ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦
 

Simplifying: 
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Alternately, note that ( ) ( ) ( )2
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At this point, we can solve using the standard methods.  The differential operator here is 

2 9 8L D D= + +  
The auxiliary equation for the homogeneous case is ( ) ( )2 9 8 1 8 0m m m m+ + = + + =  so 
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We guess that a particular solution could have the form ( ) 2t
py t Ae= .  Applying the 

differential operator: 
2 2 2 24 18 8 30t t t t

pLy Ae Ae Ae Ae= + + =  

This is supposed to equal to 2te , so 1
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A = , resulting in our particular solution 
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( ) ( ) ( )c py x y x y x= +  so our solution is ( ) 8 2
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Now, reverse the substitution:  
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