If you have a second order Cauchy-Euler differential equation
\[a_2 x^2 y'' + a_1 x y' + a_0 y = g(x) \]
you can convert this equation into a linear ODE with constant coefficients by making a substitution: \(x(t) = e^t \). We can undo this substitution using \(t(x) = \ln x \). It's clear how to use this substitution to get rid of the \(x \) terms, but what of the derivatives?

We start by noting that this differential equation is all in terms of \(x \):
\[a_2 x^2 \frac{d^2 y}{dx^2}(x) + a_1 x \frac{dy}{dx}(x) + a_0 y(x) = g(x) \]

We want to convert our differential equation so that it is in terms of \(t \) rather than \(x \). To do this, let's define a new version of the solution:
\[\tilde{y}(t) = y(x(t)) = y(e^t) \]

Our new differential equation will be in terms of \(\tilde{y}(t) \) and its derivatives (which will be with respect to \(t \)). With this new version of the function, we can represent our original function:
\[y(x) = \tilde{y}(t(x)) = \tilde{y}(\ln x) \]

We can use these new functions to find out what \(\frac{dy}{dx} \) and \(\frac{d^2 y}{dx^2} \) in terms of \(\tilde{y}(t) \) and its derivatives:
\[\frac{dy}{dx} = \frac{d}{dx} \left[y(x) \right] = \frac{d}{dx} \left[\tilde{y}(\ln x) \right] = \frac{d\tilde{y}}{dt} \frac{1}{x} = e^{-t} \frac{d\tilde{y}}{dt} \]
(this is an application of the chain rule)

We use this first derivative to calculate the second derivative:
\[\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{1}{x} \tilde{y}'(\ln x) \right] = \frac{d}{dx} \left[\frac{1}{x} \right] \tilde{y}'(\ln x) + \frac{1}{x} \frac{d}{dx} \left[\tilde{y}'(\ln x) \right] \]
\[= -\frac{1}{x^2} \frac{d\tilde{y}}{dt} + \frac{1}{x^2} \frac{d^2 \tilde{y}}{dt^2} \]
\[= e^{-2t} \left(\frac{d^2 \tilde{y}}{dt^2} - \frac{d\tilde{y}}{dt} \right) \]
For higher order equations, you can continue to apply this same process to find the higher derivatives.

Summarizing:

\[
\frac{dy}{dx} = e^{-t} \frac{d\tilde{y}}{dt}
\]

and

\[
\frac{d^2 y}{dx^2} = e^{-2t} \left(\frac{d^2 \tilde{y}}{dt^2} - \frac{d\tilde{y}}{dt} \right)
\]

Notice that these didn't depend on the particular differential equation; these work any time that you use this substitution.

In the abstract, we can apply this directly to the general form:

\[
a_2 x^2 \frac{d^2 y}{dx^2} + a_1 x \frac{dy}{dx} + a_0 y = g(x) \xrightarrow{\text{substitution}} a_2 e^{2t} \left[e^{-2t} \left(\frac{d^2 \tilde{y}}{dt^2} - \frac{d\tilde{y}}{dt} \right) \right] + a_1 e^t \left[\frac{d\tilde{y}}{dt} e^{-t} \right] + a_0 y(e') = g(e')
\]

\[
\Rightarrow a_2 \frac{d^2 \tilde{y}}{dt^2} + (a_1 - a_2) \frac{d\tilde{y}}{dt} + a_0 \tilde{y} = g(e') \rightarrow a_2 \tilde{y}'' + (a_1 - a_2) \tilde{y}' + a_0 \tilde{y} = g(e')
\]

So, one way to approach this class of problem is just to remember that the substitution yields:

\[
a_2 x^2 y'' + a_1 xy' + a_0 y = g(x) \xrightarrow{\text{substitution}} a_2 \tilde{y}'' + (a_1 - a_2) \tilde{y}' + a_0 \tilde{y} = g(e')
\]

This ODE now has constant coefficients, and can thus be approached by our standard methods. Once we have a solution, \(\tilde{y}(e')\), we can apply the reverse substitution to get a solution for our original ODE:

\[
y(x) = \tilde{y}(\ln x)
\]
As an example, look at the differential equation:

\[x^2 y'' + 10xy' + 8y = x^2 \]

Now, substitute into the differential equation (using what we found above!):

\[
e^{2t} \left[e^{-2t} \left(\frac{d^2 \tilde{y}}{dt^2} - \frac{d\tilde{y}}{dt} \right) \right] + 10e^t \left(\frac{d\tilde{y}}{dt} e^{-t} \right) + 8\tilde{y}(t) = e^{2t}
\]

Simplifying:

\[
\tilde{y}'' + 9\tilde{y}' + 8\tilde{y} = e^{2t}
\]

Alternately, note that

\[
a_2 x^2 y'' + a_1 xy' + a_0 y = g(x) \rightarrow a_2 \tilde{y}'' + (a_1 - a_2) \tilde{y}' + a_0 \tilde{y} = g(e^t),
\]

so

\[
x^2 y'' + 10xy' + 8y = x^2 \rightarrow \tilde{y}'' + 9\tilde{y}' + 8\tilde{y} = e^{2t}
\]

At this point, we can solve using the standard methods. The differential operator here is

\[L = D^2 + 9D + 8 \]

The auxiliary equation for the homogeneous case is

\[m^2 + 9m + 8 = (m + 1)(m + 8) = 0 \]

so

\[\tilde{y}_c(t) = c_1 e^{-t} + c_2 e^{-8t} \]

We guess that a particular solution could have the form \(\tilde{y}_p(t) = Ae^{2t} \). Applying the differential operator:

\[L\tilde{y}_p = 4Ae^{2t} + 18Ae^{2t} + 8Ae^{2t} = 30Ae^{2t} \]

This is supposed to equal to \(e^{2t} \), so \(A = \frac{1}{30} \), resulting in our particular solution

\[\tilde{y}_p(t) = \frac{1}{30} e^{2t} \]

\[\tilde{y}(x) = \tilde{y}_c(x) + \tilde{y}_p(x) \] so our solution is

\[\tilde{y}(t) = c_1 e^{-t} + c_2 e^{-8t} + \frac{1}{30} e^{2t}. \]

Now, reverse the substitution:

\[y(x) = \tilde{y}(\ln x) = c_1 e^{-\ln x} + c_2 e^{-3\ln x} + \frac{1}{30} e^{2\ln x} \]

or:

\[y(x) = c_1 \frac{1}{x} + c_2 \frac{1}{x^8} + \frac{1}{30} x^2 \]