
The Number Field Sieve:
An Extended Abstract

Joshua E. Hill
e-mail: josh-math@untruth.org

Initial Release: March , 
Current Revision: August , 

 
So, one day you’re walking down the street minding your own business
when BANG! A -bit number hits you in the head. ¹ The offending
number?

n D 1 230 186 684 530 117 755 130 494 958 384 962 720 772 853 569
595 334 792 197 322 452 151 726 400 507 263 657 518 745 202 199
786 469 389 956 474 942 774 063 845 925 192 557 326 303 453 731
548 268 507 917 026 122 142 913 461 670 429 214 311 602 221 240
479 274 737 794 080 665 351 419 597 459 856 902 143 413

You perform your normal set of cursory checks; checks that you
perform on all numbers that hit any portion of your body:

• You check for “small” prime divisors, up to log.n/. In this case,
this means dividing it by the first  primes (up to ). In this
case, none of these primes divide n.

• You check to see if n is prime, using a probable prime check
such as repeated invocations of the Miller-Rabin primality test us-
ing randomly selected bases. A few iterations later (indeed, very
likely  iteration later) you establish that n is certainly a compos-
ite number.

• You check to see if n is a power of a single prime.

¹Or you download it from http://www.rsa.com/rsalabs/node.asp?id=
3723



August ,  Hill

• You check to see if n has any “small” factors (less than  digits)
by using Pollard’s rho algorithm.

• You attempt to find bigger “small” factors (- digits) by using
the elliptic curve factorization method.

• You note that the n is  digits long, which certainly puts it
well beyond the range where the quadratic sieve outperforms the
number field sieve (numbers smaller than - digits).

• You note that n does not appear to be of an “easy” form of re � s

with r , e, and s small, so you can’t apply the special number field
sieve.

Thus, you are le with a number that is best approached using the
General Number Field Sieve. You call some colleagues. It’s going to
be a long night.

Page  of 



August ,  Hill

 
The General Number Field Sieve (GNFS) is (conjectured to be) the
fastest known factoring algorithm for factoring hard composite num-
bers [] (numbers that are not of one of a variety of special forms. For
numbers of various special forms, there are various special factoring
algorithms that operate faster than the GNFS, possibly much faster,
depending on the form of the number!)

The GNFS is a factoring algorithm that is similar to the contin-
ued fraction factorization algorithm (in that the form of the auxiliary
numbers is similar) and the quadratic sieve [] (in that a sieving step is
used to find smooth auxiliary numbers which are turned into relations
and then input into a matrix reduction step to find subsets of auxiliary
numbers that can be multiplied together to get perfect squares). The
GNFS is asymptotically faster than either of these techniques, but at
the cost of additional conceptual complexity.

As suggested above, the GNFS is comprised of a series of distinct
steps. For each step, I will provide a summary of the step, note the al-
gorithms used, provide some indication of the complexity of that step,
and finally provide an example of the run time for this step during the
recent RSA- challenge team’s computation. []

Page  of 



August ,  Hill

  
The GNFS algorithm acts on a hard composite integer n that is to be
factored and produces a divisor of n. It operates by finding congru-
ent squares mod n, which lead to a non-trivial factorization of n. This
approach is a generalization of the idea that all odd composite num-
bers can be represented as a difference of two squares, thus providing a
non-trivial factorization. One can’t efficiently use this fact to factor, as
simply choosing values for x and checking to see if n � x2 is a square
is actually less efficient than trial division for most numbers.

One can extend this approach by noting that if x2 � y2 .mod n/

non-trivially (that is, x 6� ˙y .mod n/) then we have gcd .x � y; n/

and gcd .x C y; n/ are non-trivial factors of n. If one can generate ran-
dom values with this relationship, the probability that the resulting
values have the trivial relationship is less than 1

2
, so by generating sev-

eral such values we can factor n. We don’t randomly generate values,
but heuristically there isn’t a particular reason that the candidates gen-
erated through our process should be any different, so we expect this
probability to be roughly the same.

The question remains how to generate such values of x and y. Both
the Quadratic Sieve and the General Number Field Sieve use a two step
process to arrive at these numbers. First, numbers of a particular form
are sieved for smoothness (and perhaps some other properties that we’ll
discuss later in the case of the GNFS algorithm), and then a matrix re-
duction step is used to find subsets of the smooth numbers that can be
multiplied together to form the candidate congruent squares. We ex-
pect roughly half of these candidates to be non-trivial, so by generating
many such candidates we can have a very high probability that we will
find a non-trivial factorization.

Though the broadest outline of these two factoring algorithms is
similar, they differ significantly in their detail. Most importantly, the
Quadratic Sieve operates over the integers only (over Z�Z). The Gen-
eral Number Field Sieve operates over the integers and over the ring
ZŒ˛� (so over Z � ZŒ˛�, where ˛ is a root of an artfully chosen polyno-
mial f .X/). For the final step (where the result should be within the
integers) we reduce using the map

.Z � ZŒ˛�/
�
�! .Z=nZ � Z=nZ/

where the first (integer) component is simply reduction mod n, and the
second component is a homomorphism that we’ll call �2 and establish
later.

This difference introduces a great deal of complexity to the general
number field sieve that is not present in the quadratic sieve, but it is

Page  of 



August ,  Hill

this difference that allows the General Number Field Sieve to asymp-
totically out-perform the Quadratic Sieve.

.   
In order to start, we must first choose the parameter ˛. This choice is
hugely significant to the runtime of the algorithm, so a good choice
of ˛ is vital. We’ll choose an irreducible polynomial f .X/ (irreducible
over Z) of degree d (f .X/ and d are parameters) and let ˛ be a root of
this polynomial some extension of Q. So long as f .X/ is monic, we
have an easy way of representing ZŒ˛�:

ZŒ˛� Š ZŒX�=.f .X// Š Z � 1 ˚ Z � ˛ ˚ : : : ˚ Z � ˛d�1

Sadly, we don’t necessarily have the condition that ZŒ˛� D OQ.˛/,
but we’ll deal with this sad fact later.

In order to answer our factoring question (which is, aer all, a
question about the integers), we need to fix some homomorphism that
moves values in ZŒ˛� into the integers (or something sufficiently sim-
ilar to the integers, in any case), �2 W ZŒ˛� ! Z=nZ. It is sufficient
to establish the value of �.˛/ D m (a parameter) and then extend Z-
linearly. We must then choose a value for m so that f .m/ � 0 .mod n/.

This still leaves quite a lot of flexibility for the choice of f (and
thus d ) and m. One option is to choose d ahead of time (generally
from the integers between  and , though the optimal choice for
d tends toward infinity as n tends toward infinity), and then choose
m D b d

p
nc. We can then represent n as a number base m, that is

n D
Pd

iD0 cim
i where ci is some integer from  to m � 1. Now let

f .X/ D
Pd

iD0 ciX
i . Clearly f .m/ D n � 0 .mod n/ so this trivially

satisfies the congruence requirement. Now, we can assume that this
f .X/ is irreducible (as if not, we are done: if f .X/ D h.X/g.X/ then
n D f .m/ D f .m/g.m/, a non-trivial factorization of n).

This does work, but it is generally not the optimal choice for f .X/.
In the RSA- challenge, the team spent  processor years ² evaluat-
ing more than 260 different polynomials in order to to select the poly-
nomial f . This selection was made based on various criteria for the
polynomial, mainly dealing with the resulting smoothness probabil-
ity over the relevant range of values (the size of the coefficients, the
number of roots modulo small primes, smoothness of the leading co-
efficients and the number of real roots).

²Quoted processor years are normalized to refer to a single . GHz AMD
Opteron.

Page  of 



August ,  Hill

For reference, the polynomial chosen for the algebraic representa-
tion by the RSA- challenge team was

f1.X/ D 265482057982680X6

C 1276509360768321888X5

� 5006815697800138351796828X4

� 46477854471727854271772677450X3

C 6525437261935989397109667371894785X2

� 18185779352088594356726018862434803054X

� 277565266791543881995216199713801103343120

The RSA- challenge team also chose a (degree ) polynomial to
represent the integer side of the calculation.

.    
Now that we have specified the ring ZŒ˛�, we can specify the sieving
process. The sieving step operates on elements of Z � ZŒ˛�, locating
values that are smooth in their respective rings.

We’ll first generate a universe

U D
˚
.a; b/ 2 Z � Z W jaj � u; 0 < b � u; gcd.a; b/ D 1

	
with some positive parameter u. We’ll fix u later; its value will estab-
lish the total number of values that we’ll examine in our sieve. We’ll
sieve³ values of the form .a � bm/ and .a � b˛/ (for all .a; b/ 2 U ) for
smoothness as described below.

We then process the relations derived from the smooth integer /
algebraic integer pairs within the linear algebra step.

..  
We’ll define an element .x; 
/ 2 Z � ZŒ˛� as y-smooth if the factor-
ization of x and N.
/ (the norm of 
) involves only primes less than a
parameter y. The choice of y will be discussed later.

The general notion underlying our interest in smooth numbers is
two-fold. This is easiest to explain in the context of the integer portion
of our computation: we view each of our y-smooth integers as a vector
in a F2 vector-space where the primes act as the basis elements. For-
mally, we enumerate the primes less than or equal to y as p1; p2; : : : ; pk

³Look at that! “sieve” can be used as a transitive verb!

Page  of 



August ,  Hill

(that is, k D �.y/, so the .kC1/-st prime is larger than y). We represent
the y-smooth integer x 2 ZC by its prime factorization, x D

Qk
iD1 p

ji

i

and then map the value to our vector space

kY
iD1

p
ji

i !

kX
iD1

.ji .mod 2// � pji

Š .j1 .mod 2/; j2 .mod 2/; :::; jk .mod 2//

We are ultimately going to multiply a subset of our selected smooth
integers in order to construct a square (otherwise said, a subset of our
selected smooth integers will multiply to have only even exponents).
In our vector space, this is equivalent to finding a subset of vectors that
can be added to get . Said in the language of linear algebra, we are
looking for a linear dependency within our set of vectors. Once we find
a linear dependency, we can construct a square integer by multiplying
the smooth integers that correspond to the vectors present in the sum
that resulted in the linear dependency.

Taking the first k primes, this gives us a k-dimensional vector space,
so by choosing more than k vectors, we are guaranteed to find at least
one linear dependency. If we didn’t limit ourselves to a fixed set of
primes, we could have an infinite number of values with no linear de-
pendency (as there are an infinite number of primes!).

To justify our interest in the first k primes (and thus y-smooth in-
tegers, rather than integers composed of some other set of k primes),
there is a more probabilistic explanation: randomly selected integers
with a particular large prime factor are much more rare than integers
with a particular smaller prime factor. If we are randomly selecting
integers, we are more likely to happen across instances where there are
several numbers with the same small prime factor in common than
numbers with the same large prime number in common. As we can
only arrive at a linear dependency when at least two numbers share the
same prime factor, this suggests that the small primes are more signif-
icant than the large prime factors in our search.

..   
The above argument is sufficient to find squares in the integers, but
what what about ZŒ˛�? The answer is that it’s more complicated.

We start out the same basic way. First, we formulate a way of spec-
ifying the primes of degree  that divide a particular a � b˛. First, if
p (an integer prime) divides N.a � b˛/, then we expect a prime in
ZŒ˛� over p. We can represent this prime as p D .pI rp/ D .p; rp � ˛/

Page  of 



August ,  Hill

where rp D ab�1 .mod p/. Thus, for each a and b and prime p divid-
ing N.a � b˛/, we can generate the degree  prime p over p through
this relation.

Now that we can (in principal) enumerate the full set of possible
prime divisors to a � b˛, we can restrict ourselves to purely the primes
whose norms are less than y, enumerated as p1; p2; : : : ; pl so we now
have a finite list of primes to sieve over.

We might expect this to proceed just as the integers did from this
point, but there are complications. Upon completing our linear alge-
bra step, we again have a set of values such that

Q
.a;b/2S.a � b˛/ D ˇ

where the powers for all primes in the product are even. “Grand”, we
think to ourselves, “a square!”.

Sadly, this is not necessarily the case. The obstructions are as fol-
lows:

a) If ZŒ˛� ¤ OQ.˛/, then ˇOQ.˛/ may not be the square of any ideal.

b) Even if ˇOQ.˛/ is the square of an ideal, that ideal may not be
principal.

c) Even if ˇOQ.˛/ D .
OQ.˛//
2 for some 
 2 OQ.˛/ (i.e., ˇOQ.˛/ is

the square of a principal idea), we may only have ˇ D 
2 up to
multiplication by some unit of OQ.˛/ (that is, ˇ D h
2 where h

is a unit of OQ.˛/).

d) Even if ˇ D 
2 in OQ.˛/, we may have 
 62 ZŒ˛�.

We’ll fully solve (d) first, and then bound the damage done by (a)-
(c), and then talk about how to address these issues.

For (d), we can fairly quickly solve the problem by recalling that we
can force values from OQ.˛/ to be in ZŒ˛� by simply multiplying them
by f 0.˛/. In our case, we can force the square root of the algebraic com-
ponent’s square into ZŒ˛� by multiplying the algebraic component by
f 0.˛/2. To maintain the necessary relationship between the integer
and algebraic integer components, we then multiply the integer com-
ponent by f 0.m/2.

We are le with the obstructions (a)-(c). We don’t have direct solu-
tions that nicely fix everything, but we can estimate the degree of the
damage; we define a filtration based on:

• Let V�1 be the group generated by all elements of the form .a �

b˛/ with gcd.a; b/ D 1.

• Let V0 be the subgroup of V�1 such that if ˇ 2 V0, then ˇOQ.˛/

has only even exponents at the primes of ZŒ˛�. This subgroup
includes all of the candidates that can can be produced by the
sieve step.

Page  of 



August ,  Hill

• Let V1 be the subgroup of V0 such that if ˇ 2 V1, then ˇOQ.˛/

has only even exponents at all the primes of OQ.˛/ (that is to say,
ˇOQ.˛/ is the square of an OQ.˛/-ideal). Said alternately, this is
the subgroup of V0 that does not suffer from obstruction (a).

• Let V2 be the subgroup of V1 where if ˇ 2 V2, then ˇOQ.˛/ is the
square of a principal ideal of OQ.˛/, say ˇOQ.˛/ D

�

OQ.˛/

�2 for
some 
 2 OQ.˛/. Said alternately, this is the subgroup of V1 that
does not suffer from obstruction (b).

• Let V3 be the subgroup of V2 where if ˇ 2 V3, then (by the above)
ˇOQ.˛/ D

�

OQ.˛/

�2, and ˇ D 
2. Note V3 D V0 \ .Q.˛/�/2.
Said alternately, this is the subgroup of V2 that does not suffer
from obstruction (c).

From these definitions, we have the filtration V0 � V1 � V2 � V3.
By construction we have that dimF2

V0=V1 measures the size of the
obstruction (a). Similarly, dimF2

V1=V2 measures the size of the ob-
struction (b) and dimF2

V2=V3 measures the size of the obstruction (c).
We are interested in examining the impact of all these obstructions on
the candidates that we generate (the naïve application of the sieve step
produces members of V0, but we want members in V3, which we can
surely convert into solutions that certainly do not suffer from obstruc-
tion (d)).

Through a series of algebraic arguments we are able to arrive at the
conclusion that dimF2

V0=V3 � log n. This result can be interpreted as
giving the expected likelihood that a randomly selected candidate that
lies in V0 also lies in V3; we expect that the proportion of these that lie
in V3 to be at least 1

log n
.

We thus immediately have a fairly inelegant solution to this prob-
lem: just produce quite a lot of candidates and then run some test that
will tell you which of your candidates is in the desired V3, and is thus
truly a square.

We are le with the question of what this test is. If x 2 V0, we can
verify that x 2 V3 by verifying that all characters � W V0=V3 ! F2 are
trivial at x. It isn’t reasonable to actually try all of the characters, but
we can note that these characters themselves form a vector space of the
same dimension as V0=V3, which is to say dimension � log n. This
implies that if we could find a spanning set for Hom .V0=V3; F2/ then
we could test our candidates by using this spanning set to verify that
our candidate is certainly within V3. Sadly, we don’t have any obvious
way of generating such a spanning set deterministically. Instead, we
choose randomly from the space Hom .V0=V3; F2/ and hope for the
best.

Page  of 



August ,  Hill

If a vector space is dimension w and we select wCs random vectors
from the space, the probability that our w C s vectors span the vector
space is 1 � 2�s. By choosing a sufficiently large number of random
vectors from the space, we can make this as close to  as desired.

So, to apply this method, we need some way of generating ran-
dom quadratic characters. In the integers, the Legendre symbol

�
x
p

�
accomplishes this task so long as p − x: we have

�
x
p

�
D �1 implies

that x is not a square, and if x is not a square then
�

x
p

�
D �1 for half

the primes p. Thus, we can modify this to be a quadratic character:
�p.x/ D �

1
2

��
x
p

�
� 1

�
.

We construct an analog for this function in ZŒ˛� by first noting that
if q is a prime integer and a and b are selected as above and q D .q; rq/

is degree , we can define a map � W ZŒ˛� ! Fq as �.˛/ D ab�1

.mod q/ (extended Z-linearly), then define �q.x/ W ZŒ˛� ! F2 as

�q.x/ D �
1

2

��
�.x/

q

�
� 1

�
We can assure that this remains well behaved by choosing primes

that can’t possibly be factors of x, for example primes such as q where
N.q/ > y.

These quadratic characters can be considered randomly distributed
as a consequence of the Chebotarev density theorem, so by selecting a
suitable number of these primes, we can (very likely) span the set of
quadratic characters.

Now, there are two ways of proceeding from here. We have our test,
so we can simply check all of our candidate values against a suitable
number of these quadratic characters. This is the approach followed by
the RSA- challenge team; indeed, they had selected the polynomials
to decrease the dimension of V0=V3, which resulted in only having to
exclude  of the total of  final candidates in the quadratic character
test stage.

Another option would be to include these quadratic characters di-
rectly into the initial sieve step. We’ll discuss this possibility in more
detail in the next section.

..  
In order to generate a sufficient supply of smooth numbers of the cor-
rect form, we sieve for them. For the integer and algebraic integer sides
we establish a factor base. This can be abstractly thought of as a set of
rules that establish which terms we allow within the candidates that
are to “pass through” the sieve.

Page  of 



August ,  Hill

For the integer side, we want to include the list of allowed primes
p1; p2; : : : ; pk along with the possible factor �1 (which can be either
present or not, and so has exponent  or , respectively). We call this
factor base B1.

For the algebraic integer side, the factor base is made up of the full
set of allowable first-order primes p1; p2; : : : ; pl . If we are interested in
avoiding the final quadratic character test, we can also select Ol distinct
quadratic characters �q1

; : : : ; �qOl
(where Ol is chosen to be appropriately

large to assure a small chance of error) as members of the factor base in
the sense that each character will be applied to each component, and
the result of the character will be stored in the same way that the power
of each prime that is present is stored. (We don’t expect to, in any sense,
“divide” by the quadratic character elements, just store the results for
every quadratic character and deal with them as if they were exponents;
these will be stored within the “Quadratic Character Columns” of our
final matrix). We call this factor base B2.

Now we apply the sieve. For each value in U we populate an integer
table made up of the elements a � bm and an algebraic integer table
made up of elements a � b˛. We can quickly establish what power
of which primes divide each entry and divide them out. Once we have
proceeded through all the primes and prime powers in the factor bases,
we are le with a set table of entries that are either units or non-units.
If they are non-units, they are rejected as being insufficiently smooth.
If they are units, they are accepted as y-smooth. In this process, we can
store the “divided out” terms for each entry in our table, resulting in a
complete factorization for each of the resulting smooth elements. We
accept only values for .a; b/ that result in smooth values both in the
integers (.a � bm/ is smooth) and over the algebraic integers (.a � b˛/

is smooth).
Once we know which values are being accepted, we can option-

ally test these accepted values by processing the extra terms in the fac-
tor base that are not associated with prime factors (the �1 term for
the integer side and the quadratic characters for the algebraic integer
side), noting the resulting values as if they were exponents within the
quadratic character columns.

We’ll identify these smooth values using U 0 � U , the particular
.a; b/ 2 U values that passed the sieving step.

The resulting vectors for each candidate are referred to as “rela-
tions”, as these are the vectors the move into the linear algebra step.

This seems a complicated procedure, but it can be accomplished
quite efficiently, asymptotically using u2Co.1/ operations total, where u

is as defined in section ..

Page  of 



August ,  Hill

In practice, this calculation can be hugely parallelized to the process
scales well across clusters. The RSA- challenge team spent over 
processor years doing the sieving step, but this investment included
significant over-sieving (they produced approximately twice as many
candidates as were strictly necessary). This was done to increase the
options for the quicker but more delicate linear algebra step.

By the end of the sieving, the RSA- challenge team accumu-
lated 64; 334; 489; 730 relations, each represented by  bytes (a total
of about TB of relations). As a consequence of the distributed siev-
ing algorithm used, these relations contained a significant proportion
of duplicates (27:4%), which should be discarded. At this point in the
calculation, any relation that contained a unique prime (a prime not
present in any of the other relations) was also discarded, as were cliques
(small sets of relations that share primes that are not in other relations).
When this discard step was complete there were 2; 458; 248; 361 rela-
tions le (only 3:4% of the initial set of relations!) involving a total
of 1; 697; 618; 199 distinct primes. This discard step took  processor
days .

..  
We now have a set of relations that we will form into a matrix and look
for linear dependencies between the relations. Once we find such de-
pendencies, we will nearly be done. The naïve approach to this task
would be to use Gaussian Elimination. If we had t relations each of
size s, this approach would result in a runtime of O.t2s/, which would
ruin our ultimate asymptotic performance. Hence, we adopt more ad-
vanced algorithms, namely the block Wiedemann or (Montgomery’s
variation of the) block Lanzcos algorithms, both of which run in time
proportional to the dimension and the weight of the matrix (the sum
of the hamming weight of the vectors).

In practice, one wants to construct a matrix that will contain a suit-
ably high number of dependencies. This allows us to accept the in-
evitable loss of some of the resulting linear dependencies. These losses
could either be due to the linear dependency corresponding with a
trivial relation between the two squares (which has probability heuris-
tically < 1

2
), or due to the expected loss of relations that correspond to

algebraic numbers V0 but not in V3 (if the quadratic characters aren’t
included within the relations). We would also like this matrix to be
nearly optimal for whatever algorithm has been selected to reveal the
linear dependencies. This matrix creation step is called the merging
process.

Page  of 



August ,  Hill

This merging process took the RSA- challenge team about 
processor years, and resulted in a 192; 796; 550 � 192; 795; 550-matrix,
which had a weight of 27; 797; 115; 920. The advantage to all this pre-
computation is that the matrix step took “only”  processor years to
compute.

.  
Once relations are found (and if not included within the factor base,
the quadratic character tests rule out non-square results) and we resolve
issue (d), we are le with candidates of the form0@f 0.m/2

Y
.a;b/2S

.a � bm/; f 0.˛/2
Y

.a;b/2S

.a � b˛/

1A
where S is a particular subset of U 0 that is associated with a linear

dependency identified in the linear algebra step.
The first value in this tuple is guaranteed to be a square integer, and

the second element is very likely a square (recall the quadratic character
test is probabilistic!). We can trivially calculate the square root of the
integer term (we’ll call this square root x0). Calculating the square root
of the algebraic integer is (predictably) rather complicated.

The methods of Montgomery [] or Nguyen [] can be used to ex-
tract this square root.

Once the square root, 
 , is calculated, a quick application of the
homomorphism developed at the start gives us

�
�
x0; 


�
D .x; �2.
//

(where x is just the reduction of x0 .mod n/)
All our work assures us that x2 � �2.
/2 .mod n/. We then check

to see if the resulting relationship is trivial, that is we check to see if
x D ˙�2.
/ .mod n/; we (heuristically) expect that this occurs less
than half the time, so having several candidates is important even at
this late stage!

If this congruence is not trivial, then we find that n has non-trivial
factors gcd .n; x � �2.
// and gcd .n; x C �2.
//.

The RSA- challenge team had  linear dependencies identified
from the linear algebra step. Checking the corresponding candidates
using the quadratic character excluded 52 of these linear dependencies.
They then used Montgomery’s method for taking square roots, which
took less than a processor-day per solution.

Page  of 



August ,  Hill

.    
We summarize the parameters in Table .

Table : Parameter Summary
Parameter Description
n The hard composite number to be factored (§)
f .X/ An irreducible polynomial (§.)
˛ A root of f .X/ (§.)
d The degree of f .X/ (§.)
m An integer root of f mod n (§.)
u Establishes the size of our sieving universe (§.)
y The smoothness bound for the sieve (§..)
Ol The number of quadratic characters used (§..)

We can make swing at choosing parameters in order to establish
the performance of the algorithm. These estimates are largely based on
conjecture and heuristic arguments. We seek to maximize the number
of smooth numbers available to us; by applying some heuristics and
minimizing the resulting equation, we find that

d �

�
3 log n

log log n

� 1
3

The asymptotic cost of the algorithm is on the order of u2Co.1/ C

y2Co.1/ as n ! 1, where the first term is the cost of the sieve operation
and the second term is the cost of the matrix operation. For the purpose
of simplification, we could desire to spend roughly equal time in each
task, at which point we would choose these parameters so that

log u � log y �

�
8

9

� �
log n

� 1
3

�
log log n

� 2
3

With these choices, we arrive at the (conjectured) asymptotic run
time of

exp
��

.64=9/
1
3 C o.1/

� �
log n

� 1
3

�
log log n

� 2
3

�
A summary of the run time of the high level tasks involved in the

RSA- challenge team’s calculation is available in Table .

Page  of 



Table : RSA- Processing Time Summary
Step Processor Years Percentage
Selection of f .X/ (§.) 40 2:2%
Sieving (§..) 1300 71:8%
Discarding excess relations (§..) 0:03 < 0:01%
Merging (§..) 10 0:6%
Linear Algebra (§..) 460 25:4%
Square root (§.) 0:01 < 0:01%
Total 1810:04

 
Roughly . years later aer that harrowing day when that pesky num-
ber hit you, you finally have closure.
n D 33 478 071 698 956 898 786 044 169 848 212 690 817 704 794 983

713 768 568 912 431 388 982 883 793 878 002 287 614 711 652 531
743 087 737 814 467 999 489 �

36 746 043 666 799 590 428 244 633 799 627 952 632 279 158 164
343 087 642 676 032 283 815 739 666 511 279 233 373 417 143 396
810 270 092 798 736 308 917

It’s time to go to the beach.




[] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Lenstra,

Emmanuel Thomé, Joppe Bos, Pierrick Gaudry, Alexander Kruppa,
Peter Montgomery, Dag Arne Osvik, Herman te Riele, Andrey Tim-
ofeev, and Paul Zimmermann. Factorization of a -bit rsa mod-
ulus. Cryptology ePrint Archive, . http://eprint.iacr.
org/2010/006.pdf.

[] Peter L. Montgomery. Square roots of products of algebraic num-
bers. In Mathematics of Computation –, pages –.
American Mathematical Society, .

[] Phong Nguyen. A montgomery-like square root for the number
field sieve. In Proceedings of ANTS-III, volume  of LNCS, pages
–. Springer-Verlag, .

[] Carl Pomerance. Smooth numbers and the quadratic sieve. In
J.P. Buhler and P. Stevenhagen, editors, Algorithmic Number Theory:
Lattices, Number Fields, Curves and Cryptography. Mathematical Sci-
ences Research Institute Publications, Cambridge University Press,
.

[] Peter Stevenhagen. The number field sieve. In J.P. Buhler and
P. Stevenhagen, editors, Algorithmic Number Theory: Lattices, Num-
ber Fields, Curves andCryptography. Mathematical Sciences Research
Institute Publications, Cambridge University Press, .



Colophon
The text of this document is typeset in Jean-François Porchez’s won-

derful Sabon Next typeface. Sabon Next is a modern () revival of
Jan Tschichold’s  Sabon typeface, which is in turn a adaptation of
the classical (in all meanings) Garamond typeface, which dates from
the early th century.

Equations are typeset using the MathTime Professional II (MTPro)
fonts, a font package released in  by the great mathematical expos-
itor Michael Spivak. These fonts are designed to work with the Times
typeface, but they blend well with most classical fonts.

X ETEX was used to typeset the document, which is in turn offspring
of Donald Knuth’s profoundly important TEX. X ETEX was selected in
order to gain access to modern fonts without the trauma involved in
converting them to a representation that pdfTeX could deal with. This
approach makes most (though sadly, not all) OpenType features avail-
able, and sidesteps the traditional limit of  glyphs per font.

WinEdt  was used as an editor.


