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π  is defined to be the ratio of the circumference of a circle and its diameter.  It's difficult 
to actually estimate this value using honest-to-goodness circles, given their... uh... 
bendiness. 
 
Archimedes decided that it would be reasonable to take a circle, and inscribe a regular n-
gon (that is, draw the n-gon so that its vertices are on the circle; the term "regular" means 
that each of its sides is the same length.), and then take the circumference from that n-gon 
(which is relatively easy to figure out) and then divide by the diameter of the circle.  For 
example, a regular 4-gon is a square, depicted below inscribed in a circle. 
 

  
 
Now, because we've inscribed the shape, the circumference of our n-gon is smaller than 
that of the circle (this seems intuitively obvious, but can be proven rigorously by 
applying the triangle inequality) so when we divide by the diameter of the circle, we get a 
lower bound for π .  As we increase the number of sides of our n-gon, we get less and 
less "slop", and our polygon's circumference grows closer and closer to the circumference 
of an actual circle, and our estimated value for π  increases. 
 
Now, look at it from the opposite end: Let's circumscribe a regular n-gon, where each 
face of the n-gon only touches the circle once.  For example, below we have a square 
circumscribing the same circle. 
 

 
 



It ends up that this new circumscribed n-gon will provide an over estimate for the 
circumference, so if we divide by the diameter of the inscribed circle, we'll get an upper 
bound for π .  We'll show that this is an upper bound shortly. 
 
Now, Archimedes accomplished amazing feats by getting up to a regular 96-gon, and 
estimating square roots, etc.  I'm just interested in a nice closed form solution.  Here we 
go in that attempt. 
 
First, note that any regular n-gon can be broken into n isosceles triangles, with each 
triangle having a vertex at the center of the circle/n-gon and the two adjacent vertices of 
the n-gon. 
 
This results in our two cases as follows.  For the inscribed n-gon, the other vertices lie on 
the circle, so we get triangles that look like this: 
 

 
 
In the circumscribed case, the other vertices lie outside the circle (though each face's 
midpoint touches the circle) so we get the following triangles: 
 



 
 
Note that both of these triangles decompose into two (identical) right triangles, each with 
a base of one half the full triangle's base.  A quick application of trig gives the base of the 
full inscribed triangle (where r is the radius of the circle, and n is the number of sides in 

the n-gon) as 2 sinr
n
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. 

 
The n triangles partition the n-gon, so we can calculate the circumference of the n-gon by 
just calculating the base of one of these triangles, and multiplying it by n (the number of 
triangles). 
 
Now, in each case, we divide by the diameter, 2r , and we get our two estimates, which 
under our assumption (which we'll show in just a moment) 
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Both of these sequences were designed to converge to π .  Indeed, we have 
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We can say more.  Examining these as continuous functions of x, we get 
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We are only interested in the values 3x >  so we are necessarily evaluating the 
trigonometric functions within the first quadrant.  Though not obvious, ( )f x′  is strictly 

positive in this region, and ( )g x′  is strictly negative.  Thus, our supposed upper bound is 
strictly decreasing to π , and our (now verified to be) increasing sequence is strictly 
increasing to π .  Thus we have shown that we have upper and lower bounds as stated 
above. 
 
So, the existence of these bounds is great, but without the ability to calculate trig 
functions accurately, it seems problematic to calculate bounds for π , and indeed none of 
this is new; all of this development is essentially due to Archimedes. 
 
Let's push a bit further: 
 

First, recall that 1cos sin  
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.  We can now note that we are restricted to the first 

quadrant, we can discard the negative options. 
 
Given that these are all in terms of ( )cos θ , we're going to need to understand how 

( )cos θ behaves.  In order to take full use of this half angle formula, we'll restrict 

ourselves to angles that are divided by powers of two: Let's let 2 jn = .  (that is, we'll 
consider only regular ( 2 j )-gons). 
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This is a recurrence relation that we can run forward (from 2c , which we know).  So, we 

can use this relation to find cos
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for any 1j >  by calculating all (j-1) values prior to 

j. 
 
Now, looking at our formulas for our inscribed (lower bound) estimate for π  taken from 
a ( 2 j )-gon: 
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(by the half angle formula) 
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Similarly, we can find an overestimate for π  from the circumscribed ( 2 j )-gon: 
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Thus, we have the ability to calculate the inscribed and circumscribed estimates for π  by 

simply determining what cos
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 is equal to. 

 
Summarizing: 
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We now have a nice way for estimating π , using an inscribed and circumscribed (2j)-
gon.  Plugging all this into Mathematica, we find out that a regular (240)-gon (that is, a 



regular 1-trillianish-gon) gives a less tight bound that one might expect! Our bound 
guarantees about 22 decimal digits of accuracy for our estimate for π  in this case.  If we 
jump to a (2^100)-gon, we get about 59 digits of accuracy.  Indeed, the number of digits 
of accuracy varies roughly linearly with j .  And for the fun of it, the estimate from the 
regular (2170)-gon gives us about 100 digits of accuracy: 
 π  is approximately: 
 3. 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944  
 5923078164 0628620899 8628034825 342117068 


