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In 1734 Leonhard Euler (roughly pronounced "Oy-ler") discovered that the series 
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In discussion, we found that 2
1

1
k k

∞

=
∑  is convergent.  At this point you can see this a few 

ways: 
• This is a p-series, with 2 1p = > , so the series is convergent. 

• 
( )2

1
1k k k

∞

= −∑  converges (as seen during discussion).  Both of these series have 

positive terms, so we can apply the limit comparison test with these two series: 
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 is positive and decreasing as k grows larger, so we can use the Integral Test.  
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Notice that the last two approaches gave us estimates for the infinite series, but we never 
figured out what the series was actually equal to. 
 
To determine this, we start out looking at an apparently unrelated power series: 
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Now we attempt to develop another way of writing out this same function.  For any 
polynomial ( )p x with only real roots 1, , mr r" , we can write our polynomial as a product 

as follows: ( ) ( ) ( ) ( )1 1 2 mp x a r x r x r x= − − −"  where a  is some constant.  As long as 
none of the roots are zero ( 0kr ≠  for all k ), we could also write this same statement as 
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One might reasonably ask if one could write infinite series in this same way.  If an 
infinite series has an infinite number of roots, can we write this infinite series as an 
infinite product?  It ends up that the answer is "sometimes" but Euler assumed that the 
answer was "yes", and indeed in this particular instance you can. 
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Now group adjacent terms into a difference of two squares: 
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We want to think about this infinite product as an infinite series again.  We can do this by 
multiplying out the infinite product. 
 
Now we have two ways of writing the same function, so we can extract some information 
by equating the two series for this function: 
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The coefficient for each power of x  should be the same, as the two series are equal. 
 
To get the 2x  term from the product we can multiply exactly one of the 2x  terms from 
the product and the rest by 1s in the product.  We are left with 
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