As a quick review, Pollard's p - 1 factoring algorithm is efficient only in the case where one of the primes, say p, has the property that p - 1 is a product of small primes (such a p - 1 is called a *smooth number*). As a review, the specification of the algorithm in your textbook is as follows¹:

Algorithm 1: Our text's version of <i>Pollard's</i> $p - 1$ <i>Algorithm</i>				
input : <i>N</i> to be factored, and a bound <i>B</i> .				
	output : <i>d</i> , a non-trivial factor of <i>N</i> or <i>failure</i> .			
	$a \leftarrow 2$			
	$j \leftarrow 2$			
	while $j \leq B$ do			
	$a \leftarrow a^j \pmod{N}$			
	$d \leftarrow \gcd(a-1,N)$			
	if $1 < d < N$ then			
	return d			
	end if			
	$j \leftarrow j + 1$			
	end while			
	return <i>failure</i>			

As an example, let's factor the value N = 6994241 using Pollard's p - 1 algorithm:

j	а	$a^j \pmod{N}$	d	Comments
2	2	4	1	
3	4	64	1	
4	64	2788734	1	
5	2788734	3834705	1	
6	3834705	513770	1	
7	513770	443653	3361	Return 3361

Dividing, we find that $6994241 = 3361 \cdot 2081$. Further investigating, we find that $3361 - 1 = 2^5 \cdot 3 \cdot 5 \cdot 7$, which is a 7-smooth number (that is, contains no prime factors larger than 7).

As a hint on your homework, using this algorithm for problem 3.21, you will need to proceed to j = 6 for part (a), j = 8 for part (b), and j = 19 for part (c).

¹Please note: This is not a standard variation of this algorithm, so you aren't likely to be able to refer to other sources for examples or clarification.