Algebra Exam, Spring 2000^1

- 1. (40 pts). True or False questions
 - (a) The polynomial $X^8 + 4X + 5$ is reducible over \mathbb{Q} .
 - (b) Assume |G| = 28. List all possible orders of a subgroup of G.
 - (c) The ideal I = (x, y) of the polynomial ring R = F[x, y] is a free *R*-module.
 - (d) The Galois group of the polynomial $x^p 2$ over \mathbb{Q} has order p(p-1), where p is a prime number.
 - (e) If α has degree m over F and β has degree n over F, then the extension field $F(\alpha, \beta)$ has degree mn.
 - (f) For any group G, the map $\theta(g) = g^2$ from G to itself is a homomorphism.
 - (g) There are exactly 6 different possible Jordan forms for a 5×5 complex matrix whose characteristic polynomial is $(t-1)^2(t+2)^3$.
 - (h) If R is a PID, then the ring $R[X_1, \dots, X_n]$ is a UFD for every positive n.
- 2. (10 pts). Factor the number 6 + 9i into Gauss primes in the ring $\mathbb{Z}[i]$.
- 3. (10 pts). Determine the direct sum structure of the abelian group A generated by $\{x, y, z\}$ with the following three relations:

$$7x + 5y + 2z = 0, 3x + 3y = 0, 13x + 11y + 2z = 0.$$

- 4. (10 pts). Let G by a group of order n which acts non-trivially on a set S of cardinality r. Show that if n > r!, then G has a proper normal subgroup.
- 5. (10 pts). Let K be the splitting field over \mathbb{Q} of the polynomial $f(x) = (x^2 2)(x^2 3)$. Determine the Galois group G of f(x) and determine all intermediate fields explicitly.
- 6. (10 pts). Let R be a ring of characteristic p. Prove that if a is a nilpotent then 1 + a is unipotent, that is, some power of 1 + a is equal to 1.
- 7. (10 pts). Let G^* be the group of non-zero complex numbers under multiplication. Let H_n be the subgroup of *n*-th roots of unity. Show that the quotient group C^*/H_n is isomorphic to C^*

¹Transcribed by Joshua Hill, 2014-03-31. Providence unknown. It is unclear if this is a UCI qualifying exam.