Qualifying Exam in Algebra

May 1997

Do six of the following ten problems.

In this exam \mathbb{Z} denotes the integers of the field \mathbb{Q} of rational numbers.

You may cite without proof only results proved in Math 535-536, or proved in Chapters 1-4 of Jacobson's "Basic Algebra".

- 1. If N is a finite normal subgroup of a group G, and if G/N contains an element of order n, prove that G contains an element of order n.
- 2. Assume that p is an odd prime and G is a finite simple group with exactly 2p + 1 Sylow p-groups. Prove that the Sylow p-groups of G are abelian.
- 3. Suppose that $G' \subseteq Z(G)$ for some group G where G' is the commutator subgroup and Z(G) the center. Show that, for all $g \in G$, the function

$$f_g(x) = xgx^{-1}g^{-1}$$

is a homomorphism.

4. Let $R = \mathbb{Z}[X,Y]$ be the ring of polynomials in two indeterminants X,Y over the rational integers. For each of the following five ideals of R with given generators, determine whether or not it is prime, and whether or not is is maximal.

(a)
$$(X,Y)$$

(b)
$$(X, 3Y)$$

(c)
$$(X^2 + 1, Y)$$

(d)
$$(3, X^2 + 1, Y)$$

(e)
$$(5, X^2 + 1, Y)$$
.

- 5. Let R be a commutative ring with identity, and let f(X), g(X) be elements of the polynomial ring R[X]. Assume the ideals generated by the coefficients of f(X), and of g(X), are both R. Prove that the ideal generated by the coefficients of the product f(X)g(X) is also R.
- 6. The finite field \mathbb{F}_{64} with 64 elements has how many elements of multiplicative order 9? Support your answer.
 - 7. Let M be the \mathbb{Z} -module generated by a, b, c with the relations

$$4a + 3b + 3c = 2a - b + 3c = 0.$$

Express M as a direct sum of cyclic modules. What are the orders of these modules?

- 8. Find the minimum polynomial of a primitive complex 20-th root of unity over the rational field \mathbb{Q} .
- 9. Let E be the splitting field of $X^{42} 1$ over the rational field \mathbb{Q} . Determine the number of subfields of E.
- 10. Let F be a field of characteristic zero not containing a primitive n-th root of unity. Assume $f(X) = X^n a$, $a \in F$, is irreducible. Show that the Galois group of the splitting field of f(X) over F is isomorphic to a group of linear transformations of the form

$$z \mapsto bz + c$$

where $b, c \in \mathbb{Z}/n\mathbb{Z}$.