Algebra Qualifying Exam, Winter 2000

Student Name and ID Number:

This exam contains 14 problems. Do as many problems as you can. A complete and correct solution of ten (10) or more problems is a PH.D. pass. A complete and correct solution of seven (7) or more problems is a Master pass. Although some partial credits might be given, complete solutions are much prefered.

- 1. Let G be a finite group acting on a finite set S. For each element $g \in G$, let $S^g = \{s \in S | g(s) = s\}$ be the subset of elements of S fixed by g. For $s \in S$, let $G_s = \{g \in G | g(s) = s\}$ be the stablizer of s.
 - a. Prove the formula $\sum_{s \in S} |G_s| = \sum_{g \in G} |S^g|$ (Hint: consider the set of pairs (g, s) satisfying g(s) = s).
- b. Prove Burnside's formula: |G| × (number of orbits) = ∑_{g∈G} |S^g|.
 2. Let T be a linear operator of an n-dimensional vector space V over a field F (not necessarily algebraically

closed), where n is a positive integer. Show that there is a basis \tilde{e} of V such that the matrix A of T with

- respect to \bar{e} has at least n(n-1)/2 zero entries.
- 3. Let V_n be the vector space of complex polynomials f(x) of degree at most n, where n is a positive integer.
- Let D be the matrix of the linear differential operator d/dx acting on V_n with respect to some basis of V_n . Prove that D is not diagonalizable.
- 4. Let H be a normal subgroup of prime order p in a finite group G. Suppose that p is the smallest prime dividing |G|. Prove that H is in the center Z(G) of G (Hint: let $ghg^{-1} = h^{2}$ and show that one can take
- i=1.
- 5. A subgroup G of $(\mathbb{R}^2, +)$ is called discrete if the topological closure of G in \mathbb{R}^2 has no limiting points in it. Show that any discrete non-cyclic subgroup G of $(\mathbb{R}^2, +)$ is a lattice in \mathbb{R}^2 , i.e., G is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
- 6. Show that the alternating A_6 has no subgroup of index 5.
- 7. Let A be an matrix in O_n with determinant -1. Show that -1 is an eigenvalue of A. Give an example showing that the same result is false without the determinant -1 condition.
- 8. Show that the compact group SU_2 has exactly 7 complex representations of dimension 5 and write down all the 7 representations in terms of the irreducible representations of SU_2 (Hint: use the fact that SU_2 has exactly one irreducible representation of degree n for each positive integer n).

- 9. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$.
- a. Sow that R is not a UFD.
- b. Factor the principal ideal (6) into a product of prime ideals in the ring R.
- 10. Determine the direct sum structure of the abelian group A generated by $\{x, y, z\}$ with the following three relations:

$$7x + 5y + 2z = 0$$
, $10x + 8y + 2z = 0$, $13x + 11y + 2z = 0$

11. Let \mathbf{F}_q be the finite field of q elements with characteristic p. Let n>d be positive integers. Prove that the generalized Fermat equation

$$x_1^d + x_2^d + \cdots + x_n^d = 0$$

- has a non-trivial solution with coordinates in F_q . (Hint: first find the sum $\sum_{x \in F_q} x^k$ for non-negative integers k.)
- 12. Let R_1, R_2 be polynomial rings in finite number of variables. Show that the product ring $R_1 \times R_2$ is a Noetherian ring.
- 13. Determine the Galois group of the polynomial $x^p 2$ over Q, where p is an odd prime number.
- 14. Let n be a positive integer. Prove that the polynomial $x^{4n} + 8x + 13$ is irreducible over Q. (Hint: make a change of variable and use the Eisenstein criteria.)