ALGEBRA QUALIFYING EXAM June 17, 2008

Instructions: JUSTIFY YOUR ANSWERS. LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators.

Notation: Let \mathbb{F}_q denote the finite field with q elements. Let \mathbb{Z} denote the integers. Let \mathbb{Q} denote the rational numbers. Let \mathbb{R} denote the real numbers.

- 1. Compute the following.
 - (a) Suppose G is a cyclic group of order 20. How many automorphisms does G have?
 - (b) How many homomorphisms are there from \mathbb{Z} to the symmetric group S_n on n letters?
 - (c) If G is a group, and $g \in G$ is an element of order 25, what is the order of g^{10} ?
- 2. Show that if G is a group of order 2pq, where p and q are (not necessarily distinct) odd primes, then G is not simple.
- 3. Factor the polynomial $x^4 + 1 \in F[x]$ and find the splitting field over F if the ground field F is:
 - (a) Q
 - (b) F₂
 - (c) R
- 4. Let $R = \mathbb{Z}[X, Y]$, the ring of polynomials over \mathbb{Z} in the variables X, Y. For each of the following ideals, determine whether the ideal is prime and whether it is maximal. In each case give a short justification.
 - (a) (X,Y)
 - (b) (3X, Y)
 - (c) (X^2+1,Y)
 - (d) $(5, X^2 + 1, Y)$
- 5. Let K be the splitting field of $X^{49} 1$ over \mathbb{Q} . Determine the number of fields F such that $\mathbb{Q} \subseteq F \subseteq K$.
- 6. Suppose G is a finite group and $H \neq G$ is a subgroup containing every subgroup $K \neq G$ of G.
 - (a) Prove that the order of G is a prime power.
 - (b) Prove that if G is abelian then G is cyclic.
- 7. Find all prime ideals in the ring $\mathbb{Z} \times \mathbb{Z}$.
- 8. Let S be the set of all 6×6 matrices A with entries in \mathbb{Q} such that the characteristic polynomial of A is $x^6 x^2$ and the minimal polynomial of A is $x^5 x$.
 - (a) If $A, B \in S$, show that A and B are similar.
 - (b) Give an example of an element of S.
 - (c) If $A \in S$, what is the dimension of the null space of $(A^2 + 1)^2$?
- 9. Show that the quaternion group Q_8 of order 8 is not a semidirect product of two proper subgroups.
- 10. Suppose F is an algebraically closed field. Find all monic separable polynomials $f(x) \in F[x]$ such that the set of zeros of f(x) is closed under multiplication.