ALGEBRA QUALIFYING EXAM June 14, 2010

Instructions: JUSTIFY YOUR ANSWERS. LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators.

Notation: Let \mathbb{F}_q denote the finite field with q elements. Let \mathbb{Z} denote the integers. Let \mathbb{Q} denote the rational numbers. Let \mathbb{C} denote the complex numbers.

- 1. Classify all groups of order 44, up to isomorphism. Make clear which of them are abelian.
- 2. Answer true or false for each of the following, and briefly explain your answer:
 - (a) The group $\{(1), (12)\}$ is a normal subgroup of S_5 .
 - (b) The center Z(G) of any group G is a normal subgroup of G.
 - (c) For any group G, the map $\theta(g) = g^2$ from G to itself is a homomorphism.
- 3. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$.
 - (a) Show that R is not a UFD.
 - (b) Factor the principal ideal (6) into a product of prime ideals in the ring R.
- 4. Let n be a positive integer. Prove that the polynomial $f(x) = x^{2^n} + 8x + 13$ is irreducible over \mathbb{Q} .
- 5. Let T be a linear operator of an n-dimensional vector space V over a field F. Assume that T is nilpotent, i.e., there is some positive integer k such that $T^k = 0$. Show that $T^n = 0$.
- 6. Construct the character table of the dihedral group of order 8.
- 7. For each of the following two rings, determine whether or not it is a field:
 - (a) $\mathbb{F}_2[x]/(x^3+x+1),$
 - (b) $\mathbb{F}_3[x]/(x^3 + x + 1)$.
- 8. List exactly one representative from each similarity class of matrices $A \in GL_2(\mathbb{C})$ such that A is similar to A^{-1} .
- 9. Determine the splitting field over \mathbb{Q} of $x^4 2$. Then determine the Galois group over \mathbb{Q} of $x^4 2$, both as an abstract group and as a set of automorphisms. Give the lattice of subgroups and the lattice of subfields. Make clear which subfield is the fixed field of which subgroup.
- 10. Find one representative from each similarity class of matrices over \mathbb{Q} whose characteristic polynomial is $x^5 + x^3$.