Field Theory (May 1996 - June 2008)

- 8. Find the Galois group of the polynomial $3x^3 9x^2 + 9x 5$ over **Q**.
- 1996-05
- 9. Let E be a splitting field of $x^8 1$ over a field F of 4 elements. Find card(E).
- 10. Let F be a field, and $f(x) \in F[x]$ a nonzero monic polynomial. Suppose that the zeros of f(x) in a splitting field E of f(x) over F are all distinct and that the set of zeros is closed under multiplication. Prove that either $f(x) = x^n 1$ or $f(x) = x^n x$ for some natural number n.

6. The finite field \mathbb{F}_{64} with 64 elements has how many elements of multiplicative order 9? Support your answer.

- 9. Let E be the splitting field of $X^{42} 1$ over the rational field \mathbb{Q} . Determine the number of subfields of E.
- 10. Let F be a field of characteristic zero not containing a primitive n-th root of unity. Assume $f(X) = X^n a$, $a \in F$, is irreducible. Show that the Galois group of the splitting field of f(X) over F is isomorphic to a group of linear transformations of the form

$$z \mapsto bz + c$$

where $b, c \in \mathbb{Z}/n\mathbb{Z}$.

- 7. Let E be the splitting field of $X^{35} 1$ over the finite field \mathbb{F}_8 with 8 elements. Determine the cardinality |E| of E. How many subfields does E have?
- 8. Determine the degree $[E:\mathbb{Q}]$ of the splitting field E of $X^{10}-5$ over the rational field $\mathbb{Q}.$
- 9. Let F be a field and let $f(X) \in F[X]$ be a separable irreducible polynomial of degree 4. Determine, as explicitly as possible, the Galois group G, of the splitting field of f(X) over F, when G has order 8.
 - 10. Show that the splitting field E of the polynomial

$$f(X) = X^3 + X^2 - 2X - 1$$

over the rational field \mathbb{Q} is obtained by adjoining a single root of f(X). Find the Galois group Gal (E/\mathbb{Q}) .

HINT: Show first that f(X) divides $f(X^2 - 2)$.

1997-08

2000-01

13. Determine the Galois group of the polynomial $x^p - 2$ over Q, where p is an odd prime number.

8 The Galois Correspondence 2000-09

Suppose α is a zero of a monic irreducible polynomial $f \in \mathbb{Q}[x]$ of degree 9. Then, Cauchy's theorem says that the quotient ring $K = \mathbb{Q}[x]/(f(x))$ is a field extension of \mathbb{Q} of degree 9 isomorphic to $\mathbb{Q}(\alpha)$.

- 8.a (2) Suppose α is a real number, but none of the other zeros of f are real. Explain why K has no (non-trivial) field automorphisms.
- 8.b (3) Suppose there is a field M properly between K and \mathbb{Q} . What are the possible degrees of
- 8.c (5) Suppose the Galois closure of K/\mathbb{Q} in L and $G(L/\mathbb{Q})$ is S_9 . Explain why there is no field properly between K and \mathbb{Q} .

2001-06

- 5. Let \mathbf{F}_q be a field of characteristic p with q elements. Let $\alpha = [\mathbf{F}_q : \mathbf{F}_p]$.
 - (2) a. Express q in terms of α and p; justify.
 - (3) b. Show that every extension of Fp is separable.
 - (3) c. Show that \mathbf{F}_q is a Galois extension of \mathbf{F}_p : Find a polynomial over \mathbf{F}_p satisfied by every element of \mathbf{F}_q (justify your answer). Conclude that all fields with q elements are isomorphic.
 - (4) d. Find an automorphism ϕ of \mathbf{F}_q over \mathbf{F}_p with exponent α . Conclude that $\mathbf{G}(\mathbf{F}_q/\mathbf{F}_p)$ is cycic of degree a.

2001-09

4. The Galois Group of a degree 5 polynomial

Let f(z) be an irreducibe degree p polynomial over Q with exactly p-2 real roots where p is a prime. Regard the Galois group G_f of f(x) as a subgroup of S_p through its action on the roots of f.

a. (3 points) Show G_1 contains a 2-cycle of S_p .

b. (3 points) Show $G_f = S_p$. Hint: Use that the irreducibility of f implies that G_f is transitive subgroup. Explain why p being a prime now implies G_f contains a p-cycle. c. (4 points) Let $f(x) = x^5 - 9x + 2$. Using a. and b. show that $G_f = S_5$.

2003-01

- 9. Let \mathbb{F}_q be the finite field of q elements with characteristic p. Its non-zero elements form a multiplicative group \mathbb{F}_q^* which is cyclic of order q-1.
 - (a) Let m be a positive integer. Prove that

$$\sum_{x \in \mathbb{F}_q} x^m = \begin{cases} -1 & \text{if } (q-1) \mid m \\ 0 & \text{otherwise} \end{cases}$$

(b) Let n > d be positive integers. Let $f(x_1, \ldots, x_n)$ be a polynomial of total degree d in n-variables with coefficients in \mathbb{F}_q . Let N(f) denote the number of solutions of the equation

$$f(x_1,\ldots,x_n)=0, \ x_i\in\mathbb{F}_q.$$

Prove that N(f) is divisible by p.

11. Let K be the splitting field over $\mathbb Q$ of the polynomial

$$f(x) = (x^2 - 2x - 1)(x^4 - 1).$$

Determine the Galois group G of f(x) and determine all the intermediate fields explicitly.

2004-09

4. Let F be the splitting field of $x^{10}-1$ over **Q**. Find $Gal(F/\mathbf{Q})$, both as an abstract group, and as a group of explicitly described automorphisms of F.

- 7. Let \mathbf{F}_q be a finite field with q elements, and K a finite extension of \mathbf{F}_q . Let $n = [K : \mathbf{F}_q]$.
 - (a) How many elements does K have? Explain.
 - (b) Show that every extension of \mathbf{F}_q is separable.
 - (c) Show that K is a Galois extension of \mathbf{F}_q .
 - (d) Exhibit an automorphism σ of K of order n, such that σ restricts to the identity automorphism of \mathbf{F}_q . Conclude that $\operatorname{Gal}(K/\mathbf{F}_q)$ is cyclic.
- 8. Suppose $f(x) \in \mathbf{Q}[x]$ is irreducible and let K denote its splitting field.
 - (a) Suppose $Gal(K/\mathbf{Q}) = Q_8$ (the quaternion group of order 8). What are the possibilities for the degree of f?
 - (b) Suppose $Gal(K/\mathbb{Q}) = D_8$ (the dihedral group of order 8). What are the possibilities for the degree of f?

- 2005-06
- (10 points) 7. Suppose p is a prime number and L/K is a field extension of degree p.
 - (a) Prove that if $K = \mathbb{Q}$, then L/K is separable.
 - (b) Prove that if $K = \mathbb{F}_p$, then L/K is separable.
 - (c) Give an example of a field extension L/K of degree p that is not separable.

(13 points) 8. Let K be the splitting field over \mathbb{Q} of $x^8 - 1$.

- (a) Find $[K:\mathbb{Q}]$.
- (b) Describe the Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$, both as an abstract group and as a set of automorphisms.
- (c) Find explicitly all subgroups of G and the corresponding subfields of K under the Galois correspondence.

2006-06

- (8) (10 points) Let q be a prime power and n a positive integer.
- (a) Prove that the map ϕ defined by $\phi(x) = x^q$ is an automorphism of \mathbb{F}_{q^n} that fixes \mathbb{F}_q .
- (b) Prove that the automorphism ϕ of part (a) generates $\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$.

2007-06

- 1 (10 points). Let \mathbf{Q} be the field of rational numbers. Find a field F such that $Gal(F/\mathbf{Q}) = D_8$, the dihedral group with 8 elements. Prove your answer.
- 2 (10 points). Let \mathbf{F}_q denote the finite field of q elements. Show that the order of the special linear group $SL_n(\mathbf{F}_q)$ is

$$q^{n(n-1)/2} \prod_{i=2}^{n} (q^i - 1),$$

and the order of the projective special linear group $PSL_n(\mathbf{F}_q)$ is

$$\frac{1}{(n,q-1)}q^{n(n-1)/2}\prod_{i=2}^{n}(q^{i}-1).$$

7 (10 points). Let F be a finite field and let K be a finite extension of F. Show that both the norm map and the trace map from K to F are surjective. Is the same statement true if K and F are number fields (finite extensions of \mathbb{Q})?

2007-09

2 (10 points). Show that every finite field is perfect, i.e., every extension of finite fields is separable.

3 (10 points). Let p be an odd prime number.

- a) Show that $\mathbf{Q}(e^{2\pi i/p})$ contains a unique quadratic extension of \mathbf{Q} .
- b) Find a field F such that $\operatorname{Gal}(F/\mathbf{Q}) = \mathbf{Z}/3\mathbf{Z}$. Prove your answer.

2008-06

- 3. Factor the polynomial $x^4 + 1 \in F[x]$ and find the splitting field over F if the ground field F is:
 - (a) Q
 - (b) F₂
 - (c) R

5. Let K be the splitting field of $X^{49}-1$ over \mathbb{Q} . Determine the number of fields F such that $\mathbb{Q}\subseteq F\subseteq K$.