
Some Approaches to for Testing Irreducibility in QŒx�

On a couple of qualifying exams, you were asked to show that f .x/ D x5 �9x C2 is irreducible over Q.
This polynomial isn’t immediately p-Eisenstein for any selection of p. One variation to this approach
that you’ve surely encountered is applying the Eisenstein criterion to a shied version of the polynomial,
(e.g. apply the Eisenstein criterion to f .x C a/ where a is some integer). As it turns out, this doesn’t
help in this case (no integer shi �1000 � a � 1000 helps). What follows is a fairly general approach
(along with a particular trick relevant to this problem). For this write up, we’ll denote the ring Z=pZ
as Zp.

We first note that ˙1 and ˙2 aren’t roots of f .x/, so by the rational roots theorem f .x/ has no rational
roots, and thus f .x/ has no linear factors over Q.

We can gain insight into f .x/ by mapping f .x/ 2 ZŒx� to a corresponding polynomial Qf .x/ 2 ZpŒx�

(for some fixed prime p) by sending each coefficient of f .x/ to its reduction mod p. More formally
we use the map ˆp W ZŒx� ! ZpŒx�, the ring homomorphism induced by the reduction ring homo-
morphism �p W Z ! Zp , defined so that the monomial ˆp.aj xj / D �p.aj /xj (and then extending
linearly). If the polynomial Qf .x/ D ˆp.f .x// is of the same degree as f .x/ and is irreducible in ZpŒx�,
then f .x/ is irreducible in ZŒx�. This can be used directly if we consider the reduction mod 7, but this
approach resolves in an unfortunate argument involving an obnoxious number of cases. Another ap-
proach is to note that by the contrapositive of the above statement, you have that if f .x/ is reducible, then
ˆp.f .x// is reducible; indeed if f .x/ D h.x/g.x/ then ˆp.f .x// D ˆp.h.x//ˆp.g.x// D Qh.x/ Qg.x/.

We proceed by applying ˆ3.f .x// D x5 � 1 D .x � 1/.x4 C x3 C x2 C x C 1/. Letting a.x/ D

x4 C x3 C x2 C x C 1, we see that a.x/ has no linear factors in Z3Œx� (just plug in all values from Z3),
so if it is reducible, it must factor into a product of irreducible quadratic polynomials. Again, we could
go through the tiresome process of ruling out this possibility, but there is a better way.

Recall that when k is a field and P.x/ is a polynomial in kŒx�, we know that P.x/ has a root ˛ 2 k (some
fixed algebraic closure of k) such that kŒ˛�=k is a degree d extension if and only if P.X/ has a degree d

polynomial factor which is irreducible over k.

Working towards a contradiction, we’ll assume that a.x/ is reducible, and thus (by the above) factors
into a product of two irreducible quadratic polynomials. We then take ˛ 2 Zp , such that ˛ is a root
of a.x/. This ˛ would then induce a quadratic field extension K D Z3Œ˛�; this K would then have 9

elements, one of which is ˛. This ˛ 2 K is a root of a.x/, so it is also a root of Qf .x/, and thus ˛5 D 1.
This tells us that ˛ has group order 1 or 5 in K�. Clearly, ˛ ¤ 1, so ˛ must have group order 5 in
K�. This is a contradiction, as the group K� has 8 elements, so by Lagrange’s theorem cannot have any
elements of order 5. We thus see that a.x/ is irreducible.

Nowworking towards another contradiction, we assume that f .x/ is reducible. We then know that there
exist monic non-constant polynomials g.x/ and h.x/ so that f .x/ D g.x/h.x/ and thus �p.f .x// D

�p.g.x//�p.h.x// D Qg.x/ Qh.x/. Clearly Qg.x/ and Qh.x/ are non-constant monic polynomials whose
degrees sum to 5. As ZpŒx� is a unique factorization domain, we then have a.x/ divides Qg.x/ or Qh.x/;
WLOG, say it divides Qh.x/. We then find that Qg.x/ is linear, and so g.x/ is linear. This is a contradiction,
as we had already found that f .x/ has no linear factors. We thus conclude that f .x/ is irreducible.

Please note, the converse is not true! For example, the polynomial x4 C 1 is reducible mod every prime, but is (fairly
clearly) irreducible over Q.




