1 Groups

- 1. Prove or Disprove: If H is a characteristic subgroup of K and K is a characteristic subgroup of G then H is characteristic in G.
- 2. Fix an integer n > 1. Prove there are only finitely many isomorphism types of simple groups which have a subgroup of index n.
- 3. Show that a simple group of order 60 is isomorphic to A_5 .
- 4. Call an invertible function $f : \mathbb{N} \to \mathbb{N}$ finite if f(n) = n for all but finitely many n. Show the group of finite invertible functions contains a unique nontrivial proper normal subgroup.
- 5. Suppose G is a group of odd order. Show that if H is a normal subgroup of G of order 5, then H is central. Show this result is false if we replace the 5 with a 7.
- 6. Let D be the subgroup $\{m \cdot 2^n | m, n \in \mathbb{Z}\}$ of the additive group \mathbb{Q} . Show D is not isomorphic to the additive group \mathbb{Q} .
- 7. Show that a group with exactly 3 elements of order 2 is not simple.
- 8. Prove every group of order 105 has a subgroup of order 21.
- 9. Prove characteristic subgroups are normal. Give an example of a normal subgroup that is not characteristic. Prove the commutator subgroup of a group is normal.
- 10. Find the isomorphism type of each Sylow group and the number of Sylow groups of each order of S_5 , S_6 , A_5 , and A_6 .
- 11. Prove or disprove: If all proper subgroups of a group are cyclic then the group is abelian.
- 12. Let *H* be a subgroup of *G*, and let σ be an automorphism of *H*. Prove or disprove: There must be an automorphism τ of *G* such that $\tau(H) = H$ and $\tau|_H = \sigma$.
- 13. Prove or disprove: The set of squares in a group is a subgroup.
- 14. Find the automorphism group of the group G consisting of all functions from $C_{10} \to \mathbb{Q}$ (where here the operation is point wise addition of functions). Is there an automorphism of order 11?
- 15. Prove or Disprove: If every finitely generated subgroup of a group is cyclic, then the group is cyclic.
- 16. Prove or Disprove: If every finitely generated subgroup of a group is abelian, then the group is abelian.

- 17. Prove or Disprove: The center of a non-abelian group G is always properly contained in some abelian subgroup.
- 18. Does S_4 have a subgroup of every order dividing the order of the group? Does S_5 ?
- 19. Classify all finite groups whose automorphism group is trivial.
- 20. Show that if G is a p-group and H is a non-trivial normal subgroup of G then H intersects the center of G nontrivially.
- 21. Determine all groups with a proper subgroup that contains all proper subgroups of the original group.
- 22. Show that if |G| = pm and G has a normal subgroup of order p then that subgroup must be central if (p-1,m) = 1. Show that last hypothesis was necessary.
- 23. Let G be a p-group, and let H be the intersection of all index p subgroups of G. Show that H is normal, and that G/H is abelian.
- 24. Let G be a group of order 72 whose center's order is divisible by 8. Show G is abelian.
- 25. Show that a group of order $5 \cdot 7 \cdot 11$ has a nontrivial center.
- 26. Show that any index 2 subgroup of a group contains the set of squares. Is this true for cubes in an index 3 subgroup?
- 27. How many conjugacy classes are in $GL_3(\mathbb{F}_2)$?
- 28. Let G be a group of order 24 with no elements of order 6.
 - (a) Prove no subgroup of order 2 is normal
 - (b) Prove $C_G(P_3) = P_3$
 - (c) Prove there are 4 distinct conjugates of P_3
 - (d) Prove G acts faithfully/transitively on $Syl_3(G)$

Conclude that $G \cong S_4$.

- 29. How many elements of order 7 does a simple group of order 168 have?
- 30. Show that a nilpotent group has subgroups of every order dividing the order of the group.
- 31. Show that if |G| = pm and G has a normal subgroup of order p, then that subgroup is central if (p-1,m) = 1. Show this is not necessarily the case if $(p-1,m) \neq 1$.
- 32. Is it possible for S_4 to act transitively on a set with 3 elements?

- 33. How many index 5 subgroups does \mathbb{Z}^n have?
- 34. Show that if G has a unique element x of order 2, then $x \in Z(G)$.
- 35. Demonstrate a Sylow subgroup of each order of $GL_2(\mathbb{F}_3)$.
- 36. True or False: A group none of whose Sylow subgroups are normal is simple.
- 37. Show any 2-generated group can have at most 3 index 2 subgroups. How many index 2 subgroups can a 3-generated group have?
- 38. Let G be a simple group and let p be a prime dividing |G|. Suppose that G has p+1 Sylow p-subgroups and that P is one of them. Show
 - (a) G is isomorphic to a subgroup of S_{p+1}
 - (b) p^2 does not divide |G|
 - (c) The centralizer of P in G is equal to P
 - (d) $|G||p(p^2-1)$
- 39. Find $#\operatorname{Aut}(C_2 \oplus C_{10})$
- 40. Which groups of order 8 are isomorphic to subgroups of S_5 ?
- 41. True or False: All subgroups are normal \Rightarrow Abelian.
- 42. Classify all groups with exactly 3 conjugacy classes.
- 43. True or False: A group all of whose elements have finite order is finite.
- 44. Show any group of order p^n (n > 1) has an automorphism of order p.
- 45. Suppose A_4 acts transitively on Ω . What are the possible orders of Ω ?
- 46. Determine all groups with exactly 3 subgroups.
- 47. Let G be a group of odd order. Prove that if $g \in G$ is conjugate to g^{-1} then g = 1.
- 48. True or False: Every finite group G can be embedded in A_n for some n.
- 49. $\operatorname{PSL}_n(K)$ denotes the group of $n \times n$ matrices of determinant 1 over K, modulo scalar matrices. Compute the order of $\operatorname{PSL}_2(\mathbb{F}_3)$ and $\operatorname{PSL}_2(\mathbb{F}_5)$.

- 50. Suppose char(F) \neq 2. Show $\operatorname{GL}_n(K)$ has exactly *n* conjugacy classes of elements of order 2. If char(K) = 2, show $\operatorname{GL}_n(K)$ has $\lfloor \frac{n}{2} \rfloor$ such conjugacy classes.
- 51. How many conjugacy classes are there in $\operatorname{GL}_2(\mathbb{F}_q)$?
- 52. Suppose H is a subgroup of G of index n. Show that G has a normal subgroup of index $\leq n!$. Use this to show there are no simple groups of order $2 \cdot 3^5 \cdot 5$.

2 Rings

- 1. Prove an Artinian integral domain is a field.
- 2. Prove or disprove: If R is a commutative ring and \mathfrak{m} is a maximal ideal then $\cap_i \mathfrak{m}^i = (0)$.
- 3. Let $R = \mathbb{Q}[x]/(x^3 x^2 x + 1)$. Show R has exactly 6 ideals and draw a lattice of them.
- 4. Show the ideal (5) is not prime in the ring $\mathbb{Z}[i]$. What is the isomorphism type of the quotient?
- 5. Prove or Disprove: The intersection of two prime ideals of a ring is prime.
- 6. Determine the isomorphism type of the unit group of $k[x]/(x^2)$.
- 7. Does there exist a ring with 10 elements with no zero divisors?
- 8. Let R be a commutative ring such that $r^n = r$ for some n for every r. Show that every prime ideal of R is maximal.
- 9. Suppose R is a domain, and R is Noetherian. Show $R[\frac{1}{f}]$ is Noetherian for $f \neq 0$. Must all rings S satisfying $R \subseteq S \subseteq \operatorname{Frac}(R)$ be Noetherian?
- 10. Suppose Ω generates $I \leq R$ a Noetherian ring. Then is it necessarily true that some finite subset of Ω generates I.
- 11. Show Nil \iff Nilpotent for a Noetherian ring R. Is either implication true for a non-Noetherian ring?
- 12. True or False: A commutative ring with a unique prime ideal is a field.
- 13. True or False: The direct limit of Noetherian rings is Noetherian.
- 14. Show there is no unit ring whose additive group is isomorphic to \mathbb{Q}/\mathbb{Z} .

15. Suppose R is a unit ring and

$$x \in \bigcap_{M \text{ maximal}} M.$$

Show that 1 + x is a unit.

- 16. If R is the subring of $\mathbb{Z}[x]$ consisting of the polynomials of the form $a_0 + a_1x + \cdots + a_kx^k$ with $2|a_i$ for $i \ge 1$, show R is not Noetherian.
- 17. Show $\dim_K (Z(KG)) = \#$ of conjugacy classes of G.
- 18. Show if $|G| \neq 1$ but $|G| < \infty$ and R is a nonzero ring with 1 that RG is never a domain. Is this still true if G is infinite?
- 19. Give an example of a ring R and a nonzero prime ideal of R that is not maximal or minimal.
- 20. Find $\#\operatorname{GL}_3(\mathbb{Z}/6\mathbb{Z})$.
- 21. Find $\#\operatorname{GL}_3(\mathbb{Z}/4\mathbb{Z})$.
- 22. Find Aut $((\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/10\mathbb{Z}))$
- 23. For which p is there a nonzero homomorphism $\varphi \colon \mathbb{Z}[i] \to \mathbb{F}_p$?
- 24. Prove a finite subgroup of the group of units of an integral domain is cyclic. Is this true if the commutativity assumption is removed?
- 25. True or False: If R is a nonzero commutative ring, then $R^2 \ncong R^3$ as rings. How about as R-modules?
- 26. Prove or Disprove: If the square of a prime ideal is prime, then its square is itself.
- 27. Suppose A is a commutative ring with 1. Show A[x] has infinitely many maximal ideals.
- 28. Determine all maximal ideals of $\mathbb{Z}[[x]]$.
- 29. If $R = \mathcal{C}[x, y]$
 - (a) Find a maximal ideal that does not contain xy
 - (b) Find a prime ideal that does not contain xy
- 30. Show that if R is a local ring with maximal ideal M then every element not in the ideal is a unit.

- 31. Show that if the order of the unit group of a ring R is odd, then the characteristic of R is equal to 2.
- 32. Show 5 is not the order of the unit group of any ring.
- 33. True or False: Every ideal of $\mathbb{Z}[x]$ can be generated by two elements.
- 34. Let α be a real number. Show the set of elements of $\mathbb{Z}[x]$ such that $f(\alpha) = 0$ is an ideal. Is it prime? Might it be maximal?
- 35. Show (x-1)(x-2)...(x-n)-1 is irreducible over $\mathbb{Z}[x]$.

3 Fields

- 1. Give a polynomial whose Galois Group over \mathbb{Q} is C_3 .
- 2. Show the polynomial $x^4 + 5x^2 + 3x + 2$ is irreducible in $\mathbb{Q}[x]$].
- 3. Prove or Disprove: If K is a subfield of F and F is isomorphic to K then F = K.
- 4. Show that if K is a finite extension of \mathbb{Q} then the torsion subgroup of K^{\times} is finite.
- 5. Show that any element of a finite field is expressible as a sum of two squares of elements of that field.
- 6. Let K be a Galois extension of \mathbb{Q} with Galois group isomorphic to S_5 . Prove that K is isomorphic to the splitting field of some polynomial of degree 5 over \mathbb{Q} .
- 7. Let f(x) be a degree four irreducible polynomial in $\mathbb{Q}[x]$ with Galois group S_4 and roots $\alpha_1, ..., \alpha_4$. Let K be the splitting field of f(x). Find the Galois group of K over $\mathbb{Q}(\alpha_1\alpha_2 + \alpha_3\alpha_4)$.
- 8. Prove or Disprove: If F is a field of characteristic p then the Frobenius map $x \mapsto x^p$ is an automorphism of F.
- 9. Does there exist a field K such that $K^+ \cong K^{\times}$?
- 10. List all quadratic subfields of $\mathbb{Q}(\zeta_5)$ in the form $\mathbb{Q}(\sqrt{d})$. Do the same for $\mathbb{Q}(\zeta_8)$ and the splitting field over \mathbb{Q} of $x^4 2$.
- 11. Find all intermediate fields between \mathbb{Q} and $\mathbb{Q}(\zeta_{27})$ with explicit generators for each.
- 12. For what q does the polynomial $x^4 + x^3 + x^2 + x + 1$ factor completely over \mathbb{F}_q
- 13. Show $x^4 x^2 + 1$ is reducible over \mathbb{F}_p for every prime p. Note: $(x^2 + 1)(x^4 x^2 + 1) = x^6 + 1$.

- 14. Consider the extension $\mathbb{Q}(x)$ of $\mathbb{Q}(x^4)$. Find its degree. If it is Galois, find its Galois group, otherwise find its splitting field and its Galois group.
- 15. Let F be a field of order p^2 . Show that 1 + 1 + 1 + 1 + 1 + 1 is a square in F.
- 16. Prove or Disprove: The only example of a finite index proper subfield of an algebraically closed field is \mathbb{R} inside of \mathbb{C} .
- 17. Give an example of a degree 3 extension of \mathbb{Q} which is not of the form $\mathbb{Q}[\sqrt[3]{\beta}]$ for some $\beta \in \mathbb{Q}$.
- 18. Is there an infinite field K such that $|\overline{K}| > |K|$?
- 19. Show $\mathbb{Q}(\zeta_{35})$ has 3 quadratic subextensions.
- 20. Describe the action of the Galois group on the roots of $x^{24} + 1$ over \mathbb{Q} .
- 21. Describe all q such that -1 is a square in \mathbb{F}_q .
- 22. How many primitive polynomials are there for the extension $\mathbb{F}_{2^{10}}$ of \mathbb{F}_2 ?
- 23. Prove or Disprove: If $\mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) = \mathbb{Q}$ then $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha + \beta)$.
- 24. Let $K \subseteq F$ be finite fields with $F = K[\alpha]$ with α satisfying $\alpha^{15} = 1$. Show $[F: K] \leq 4$.
- 25. Suppose $f: \mathbb{F}_p \to \mathbb{F}_p$ is a function. Prove it is a polynomial function.
- 26. Describe the orbits of the Galois group (over \mathbb{Q}) of $x^{24} 1$ on the roots.
- 27. Let $\zeta = e^{2\pi i/7}$. Find $\alpha \in \mathbb{Q}(\zeta)$ such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$. Show there does not exist $\beta \in \mathbb{Q}(\alpha)$ such that $\beta^3 \in \mathbb{Q}$ but $\beta \notin \mathbb{Q}$.
- 28. Determine the splitting field K and Galois group of the polynomial $x^4 2$ over \mathbb{Q} . Determine all quadratic subfields of K.
- 29. Prove any degree 5 irreducible polynomial with 3 real roots generates an extension with Galois group S_5 .
- 30. Find the Galois group of $x^5 + 7x^3 + 6x^2 + x + 5$ over $\mathbb{F}_2, \mathbb{F}_3, \mathbb{F}_5$ and \mathbb{Q} .
- 31. Let $F = \mathbb{F}_p$ and $E = \mathbb{F}_{p^n}$. Show that $\operatorname{Tr}(x): = x + x^p + x^{p^2} + \cdots + x^{p^{n-1}}$ is a linear transformation from the *F*-vector space *E* to *F*.
- 32. Suppose \mathbb{Q} has an extension of degree n, K. Show $K \hookrightarrow M_n(\mathbb{Q})$. Show $M_n(\mathbb{Q})$ does not contain isomorphic copies of any fields of degree > n.

- 33. Factor the polynomial $x^4 + x^3 + x^2 + x + 1$ into irreducible factors over \mathbb{F}_{29} .
- 34. Suppose F is a field and $f(x) \in F[x]$ is irreducible. Suppose E is a splitting field for f(x), and that for some $\alpha \in E$, α and $\alpha + 1$ are both roots of f(x). Show F is not characteristic 0.
- 35. Let F be a field extended by E. Call an element $a \in E$ abelian if F[a] is a Galois extension of F with a Galois group which is abelian. Show that the set of abelian elements of E is a field.
- 36. Let $f(x) = x^8 + x^4 + 1$, and let $E = \text{Spl}_{\mathbb{Q}}(f)$.
 - (a) Compute $[E:\mathbb{Q}]$, and find the Galois group of $[E:\mathbb{Q}]$.
 - (b) How many orbits are there in the action of G on the roots of f(x)?
 - (c) Same question over \mathbb{F}_5 and \mathbb{F}_7 .
- 37. Find an extension E of \mathbb{Q} with Galois group $C_3 \times C_3$.
- (a) Find [E: Q] where E is the splitting field of x⁶ − 4x³ + 1 over Q.
 (b) Show Gal(E/Q) has an element of order 6.

4 Modules

- 1. Show that if I is injective then $0 \to I \to B \to C \to 0$ splits.
- 2. Tensor products are right exact. Show by example that they are not left exact.
- 3. Let T be the $\mathbb{Z}[i]$ -module homomorphism from $\mathbb{Z}[i]^2$ to $\mathbb{Z}[i]$ defined by the matrix $\begin{pmatrix} 2i & 4i+2\\ 2i-2 & i \end{pmatrix}$. Determine whether T is one-to-one and whether T is onto.
- 4. Describe $\mathbb{Q}[x]/(x^4 16)$ as a product of fields.
- 5. Let R be an integral domain, I injective. Show that for every nonzero $a \in R$, multiplication by a is surjective.
- 6. Show $\mathbb{Z}/2\mathbb{Z}$ is not a projective $\mathbb{Z}/4\mathbb{Z}$ module.
- 7. Show that $(A/I) \otimes_A I \cong I/I^2$. Use this to show if A/I is a flat A-module then $I = I^2$.
- 8. Show that the tensor product of projective modules is projective.
- 9. Show projective \Rightarrow flat.
- 10. Give an example (or say why none exists) of a module which is

- (a) projective but not injective.
- (b) projective but not flat.
- (c) injective but not projective.
- (d) injective but not flat.
- (e) flat but not projective.
- (f) flat but not injective.
- 11. True or False: The set of torsion elements of a module is a submodule.
- 12. (a) Show that any nontrivial idempotent in a ring R is not a unit.
 - (b) Show eR is a projective *R*-module if $e^2 = e$.
- 13. True or False: $\prod_{i=1}^{\infty} \mathbb{Z}$ is a free \mathbb{Z} -module
- 14. Let $V = \mathbb{R}^2$. Show $e_1 \otimes e_2 + e_2 \otimes e_1$ is not a simple tensor in $V \otimes_{\mathbb{R}} V$.
- 15. Show $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m and n are coprime.
- 16. Show that $K(\alpha) \otimes L \cong L[x]/(f(x))$ where f(x) is the minimal polynomial of α and L is an extension of K. Under what conditions is this a field?
- 17. Prove that if M is a finitely generated module over a Noetherian ring R and $f: M \to M$ is surjective then it is also injective. Hint: consider ker (f^n) . Is the converse true?

5 Linear Algebra

- 1. Let A and B be two complex matrices satisfying AB = BA. Show A and B share an eigenvector.
- 2. Show two 3×3 complex matrices are similar if they have the same minimal and characteristic polynomials. Is this true for 4×4 matrices?
- 3. Let $A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$. Show there is a constant *c* such that the limit as *n* goes to infinity of $(cA)^n$ is a nonzero idempotent matrix *E* and compute *c* and *E*.
- 4. Show that if x, y, and x + y are eigenvectors of a real matrix A then x y is also an eigenvector of A.
- 5. Suppose $A \in M_n(\mathbb{Q})$ and $A^2 = 2I$. Show n is even.
- 6. Let $V = P_2(\mathbb{R})$ the space of polynomials of degree at most 2. Define $T: V \to V$ by $T(f(x)) = f(0) + f(1)(x^2 + x)$. T is a linear transformation on V.

- (a) Find the characteristic polynomial for T
- (b) Find a basis of V consisting of eigenvectors
- (c) Find $T^8(1+x)$
- 7. True or False: Two $n \times n$ matrices with the same minimal polynomial are conjugate.
- 8. Prove or Disprove: If $A \in M_n(k)$ with eigenvalues $\lambda_1, ..., \lambda_n$ when considered as an element of $M_n(\overline{k})$ then $\sum \lambda_i^2 \in k$.
- 9. Prove or Disprove: If $A \in M_n(k)$ with eigenvalues $\lambda_1, ..., \lambda_n$ when considered as an element of $M_n(\overline{k})$ then $\sum \lambda_i \lambda_j \in k$.
- 10. Under what circumstances is the Frobenius automorphism $\phi \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n} \colon x \mapsto x^p$ diagonalizable as a linear transformation over \mathbb{F}_p ?
- 11. Find all positive integers that can occur as orders of elements of $GL_2(\mathbb{R})$.
- 12. Find all positive integers that can occur as orders of elements of $GL_4(\mathbb{Q})$. Exhibit an element of order 5.
- 13. What is the largest order an element of $GL_{10}(\mathbb{Q})$ can have is?
- 14. Suppose A is an $n \times n$ matrix over C with minimal polynomial $(x \lambda)^n$ where $\lambda \neq 0$. Find the Jordan form of A^2 . What if $\lambda = 0$?
- 15. Let X be a subspace of all $n \times n$ matrices over C. Suppose all nonzero matrices in X are invertible. Conclude $\dim_{\mathcal{C}}(X) \leq 1$. Show explicitly this is false for \mathbb{R} .
- 16. (a) Show that the trace of a nilpotent matrix over a field is 0.
 - (b) Is this true over an integral domain?
 - (c) A commutative ring that is not a field?
- 17. Let K be an algebraically closed field. Let K[A] denote the K-span of the matrices A^0, A^1, \ldots Show that A is diagonalizable if and only if K[A] contains no nilpotent elements.
- 18. Show the space of nxn matrices over a field k all of whose rows and columns sum to the same value is a k vector space and compute its dimension.
- 19. Let k be a field. Show that any n+1 dimensional subspace of $M_n(k)$ contains a non-zero matrix which is not invertible.
- 20. Give an example of a transformation from a finite dimensional vector space to itself which has no eigenvalues. Give an example of a transformation from a complex vector space to itself which has no eigenvalues.