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Today’s Theme

Unremitting Propaganda for Combinatorics
(Apologies to Michael Spivak)
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The Problem

I Let f W X ! Y be a map between finite sets.
I Denote the value set Vf D ff.
/ W 
 2 Xg.
I We are interested in the cardinality of Vf, which we denote jVfj.
I Without constraints or structure, it isn’t reasonable to expect any

non-trivial algorithm.
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Algebraic, Single Variable Case

I Let f 2 FqŒx�, of degree d > 0, where q D pa.
I Denote the value set Vf D

˚
f.
/ W 
 2 Fq

	
.

I This is the case that has been most studied.
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Algebraic Varieties Defined Over Finite Fields

I X is an affine variety over NFq defined by the simultaneous vanishing
of the polynomials .˛1; � � � ; ˛`/ D ˛ 2

�
FqŒx1; � � � ; xr�

�`.
I Y is an affine subvariety of As

NFq
.

I .f1; � � � ; fs/ D f 2
�
FqŒx1; : : : ; xr�

�s, a morphism between X and Y.
I Denote the value set Vf

�
Fqk
�

D
˚
f.
/ W 
 2 X

�
Fqk
�	

� Y
�
Fqk
�
, and

Vf D Vf
�
Fq
�
.

I Note that the ` D 0 case gives an important special case (and this
along with r D 1 gives the prior case).

I By fjqk, we mean the function fjX.Fqk / W X
�
Fqk
�

! Y
�
Fqk
�
.
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Cardinality of Value Sets

lq
d

m
� jVfj � q

I These bounds are sharp!
I If jVfj D

˙q
d

�
, then f is a polynomial with a minimal value set.

I If jVfj D q, then f is a permutation polynomial.
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Notation: Big-O and Soft-O

I We have two eventually positive real valued functions
A; B W Nk ! RC. Take x as an n-tuple, with x D .x1; : : : ; xn/

I We’ll write jxjmin D mini xi.

Definition
1. A.x/ D O.B.x// if there exists a positive real constant C and an

integer N so that if jxjmin > N then A.x/ � CB.x/.
2. A.x/ D QO.B.x// if there exists a positive real constant C0 so that

A.x/ D O.B.x/ logC
0

.B.x/ C 3//
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Algorithms for Arbitrary Polynomials

One can view the problem of finding jVfj as being a generalization of the
problem of determining if a polynomial, f, is a permutation polynomial.
There are a few algorithms for this, but the best is:

I Kayal provided a deterministic-polynomial-time test running in
.d log q/O.1/. [Kayal, 2005]
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Naïve Algorithms

How to calculate jVfj?
I Evaluate f at each point in Fq. Cost: QO.qd/ bit operations.
I For each a 2 Fq, a 2 Vf , deg gcd.f.x/ � a; Xq � X/ > 0. Cost: QO.qd/

bit operations.
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Section 2

Point Counting and Weil Zeta Functions
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The Weil Zeta Function on Varieties

Consider the simultaneous zeros of a set of polynomials
f1; : : : ; fr 2 FqŒx1; : : : ; xn� over NFq; call this variety X.

I Let X.Fqk/ denote the Fqk-rational points of X.

Definition
The Weil zeta function of the variety X is defined to be

ZX D ZX.T/ D exp

 
1X
kD1

ˇ̌
X.Fqk/

ˇ̌
k

Tk
!
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Curiouser and Curiouser

I Weil conjectured that the zeta function is rational.
I This conjecture was first proven by Dwork in 1960 using p-adic

methods, and then by Grothendieck in 1964 using `-adic
cohomological methods.

I Approaches to building up ZX generally start by calculating
ˇ̌
X.Fqk/

ˇ̌
up to a suitably large k (the maximal degree of the numerator or
denominator).
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Harvey’s Point Counting Algorithm

Corollary
Let a, n, and m be positive integers, p be a prime, q D pa,
� D max .a; d.n C 1/=2e/, f1; � � � ; fm 2 FqŒx1; � � � ; xn� be polynomials of
positive degree, where each fi has total degree di, and dC D

P
i di. There

is a deterministic algorithm that calculates the number of simultaneous
solutions of f1.x1; � � � ; xn/ D � � � D fm.x1; � � � ; xn/ D 0 residing in Fn

q in

QO
�
2nCm.n C 2dC� C 2�/4n�3a2p1=2

�
bit operations.

17 / 60



Harvey’s Point Counting Algorithm: Specification

Time complexity:

QO
�
.n C 2d�/4n�3a2p1=2

�
bit operations.

I We start by extracting a point counting algorithm from Harvey’s
zeta function calculation algorithm.

I Counts projective points cut out of an affine torus by a single
degree d homogeneous polynomial, fh 2 FqŒx0; x1; � � � ; xn�.

I Only works if p − d.

18 / 60



Harvey’s Point Counting Algorithm: Affine Points

Time complexity:

QO
�
2n.n C 2d�/4n�3a2p1=2

�
bit operations.

I Let fh .x0; � � � ; xn/ D xd0f.x1=x0; � � � ; xn=x0/.
I Points where x0 ¤ 0 correspond to affine points (think: x0 D 1).
I Characterize the points by which variables are 0: denote the set of

variable indices that are 0 as S � f0; 1; � � � ; ng.
I The polynomial fh with some variables set to 0 is still degree d (or

identically 0), and cuts out a variety from the affine torus in
projective space. The Fq-rational points of this variety are denoted
Xproj

�
Fq
�S.

I The various selections of S induce a partition of the full set of
points. ˇ̌

X.Fq/
ˇ̌

D
X

S�f1;��� ;ng

ˇ̌̌
Xproj

�
Fq
�S ˇ̌̌ .
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Harvey’s Point Counting Algorithm: Divisibility Fix

Time complexity:

QO
�
2n.n C 2.d C 1/�/4n�3a2p1=2

�
bit operations.

I If p j d, then count the points on x0 fh , which has the same number
of points in the affine torus.
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Harvey’s Point Counting Algorithm: Easy as P.I.E.

Time complexity:

QO
�
2nCm.n C 2.dC C 1/�/4n�3a2p1=2

�
bit operations.

Denote:
I the variety defined by the simultaneous zeros of polynomials

f1; � � � ; fm over NFq as X,
I the polynomial fI.x/ D

Q
i2I fi.x/, for some index set I � f1; � � � ;mg,

I and the variety defined by the zeros of fI D
Q

i2I fi over NFq as XI.
The Principal of Inclusion/Exclusion then gives usˇ̌

X
�
Fq
�ˇ̌

D
X

;¤I�f1;��� ;mg

.�1/jIj�1 ˇ̌XI �Fq
�ˇ̌
.
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Harvey’s Weil Zeta Algorithm

Corollary
Let a, n, and m be positive integers, p be a prime, q D pa,
� D max .a; d.n C 1/=2e/, X be a variety over NFq defined by the
simultaneous vanishing set of the polynomials f1; � � � ; fm 2 FqŒx1; � � � ; xn�
with positive total degrees di. Denote dC D

P
i di. There is a

deterministic algorithm that calculates the zeta function of X in

QO
�
28n

2C17nCmn4nC4.dC C 2/4n
2C7na4nC4p1=2

�
bit operations.
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Harvey’s Weil Zeta Algorithm

Time complexity:

QO
�
28n

2C16nn4nC4.d C 1/4n
2C7na4nC4p1=2

�
bit operations.

I Computes the Weil zeta function of the projective variety cut out
of an affine torus by a single degree d homogeneous polynomial,
fh 2 FqŒx0; x1; � � � ; xn�.

I Only works if p − d.
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Harvey’s Weil Zeta Algorithm: Affine Variety

Time complexity:

QO
�
28n

2C17nn4nC4.d C 1/4n
2C7na4nC4p1=2

�
bit operations.

I We follow the same as in the point counting algorithm.
I Homogenize f:

fh .x0; � � � ; xn/ D xd0f.x1=x0; � � � ; xn=x0/.

I The polynomial fh with variables in S set to zero is still degree d (or
identically 0), and cuts out a projective variety whose weil zeta
function is denoted ZSXproj.T/.

I The analogous addition in every finite extension, which translates
to multiplying the zeta functions.

ZX.T/ D
Y

S�f1;��� ;ng

ZSXproj.T/.
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Harvey’s Weil Zeta Algorithm: Divisibility Fix

Time complexity:

QO
�
28n

2C17nn4nC4.d C 2/4n
2C7na4nC4p1=2

�
bit operations.

I If p j d, then examine x0 fh ; the number of Fqk-rational points on
the variety cut by this polynomial from the affine torus in
projective space is the same in every finite extension.
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Harvey’s Weil Zeta Algorithm: More P.I.E. Please!

Time complexity:

QO
�
28n

2C17nCmn4nC4.dC C 2/4n
2C7na4nC4p1=2

�
bit operations.

For all positive integer k, the Principal of Inclusion/Exclusion then gives
us ˇ̌

X
�
Fqk
�ˇ̌

D
X

;¤I�f1;��� ;mg

.�1/jIj�1 ˇ̌XI �Fqk
�ˇ̌
.

I Addition of points corresponds to multiplication of zeta functions,
and subtraction to division of zeta functions, so

ZX.T/ D
Y

;¤I�f1;��� ;mg

ZXI.T/.�1/jIj�1
.

27 / 60



Outline

1 Introduction

2 Point Counting and Weil Zeta Functions
Point Counting
Computing the Weil Zeta Function
Computing Many Weil Zeta Functions
Point Counting From the Weil Zeta Function

3 Further Combinatorial Antics

4 Counting the Value Set of Morphisms in Affine Varieties

5 Amortized Algorithms

6 Conclusion
28 / 60



Amortized Cost Calculation of Weil Zeta Functions

Corollary
Let n, m, and N be positive integers, f1; � � � ; fm 2 ZŒx1; � � � ; xn� be
polynomials with positive total degrees di and maximal coefficients kfik,
with kfk D

Q
i kfik. For a prime p let Xp denote the affine variety defined

over NFp defined by the simultaneous vanishing set of all the p-reductions
of the fi. Denote dC D

P
i di. There is a deterministic algorithm to

calculate the zeta function for Xp for all p < N in

QO
�
28n

2C17nCmC1n4nC6.dC C 2/4n
2C7nN log kfk

�
bit operations.

This proceeds from Harvey’s original algorithm in exactly the same way
as with the single zeta function computation algorithm.
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Here and Back Again?

Recall:

ZX.T/ D exp

0@X
r�1

ˇ̌
X
�
Fqr
�ˇ̌

r
Tr

1A
D

g.T/

h.T/
,

where g; h 2 1 C TZŒT�. Taking the logarithmic derivative of this
expression yields X

r�1

ˇ̌
X
�
Fqr
�ˇ̌
Tr�1

D
g0.T/

g.T/
�
h0.T/

h.T/
.
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Reading is Hard!

Proposition
If g 2 1 C TZŒT�, then the first R terms of the formal power series
g0.T/=g.T/ can be deterministically calculated in QO.R2 log kgk/ bit
operations, where kgk denotes the maximum of the absolute values of the
coefficients of g.

Proceeds via standard formal power series tools:
I Kronecker substitution for multiplication of polynomials.
I Sieveking-Kung for calculating (truncated) the formal power series

inverse.
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Section 3

Further Combinatorial Antics
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The Fiber Product

X �Y X X

X Y

�2

�1 f

f

In other words (in the category of sets):

X �Y X D f.x1; x2/ 2 X � X W f .x1/ D f .x2/g .

Similarly, define

X�Yk D X �Y � � � �Y X„ ƒ‚ …
k terms

D

n
.x1; � � � ; xk/ 2 Xk W f .x1/ D � � � D f .xk/

o
.
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jVfj and the Fiber Product

Theorem
If X and Y are finite sets, and f W X ! Y is a map such that any given fiber
has at most d elements, then the cardinality of the image set of f is

jVfj D

dX
iD1

.�1/i�1Ni�i

�
1;
1
2

; � � � ;
1
d

�
,

where Nk D
ˇ̌
X�Yk

ˇ̌
and �i denotes the ith elementary symmetric

polynomial on d elements.
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Proof Outline I

I Vf;i D
˚
x 2 Vf W

ˇ̌
f�1.x/

ˇ̌
D i
	
with 1 � i � d forms a partition of Vf.

I Let mi D
ˇ̌
Vf;i
ˇ̌
. Thus m1 C � � � C md D jVfj. Introduce a new value

� D � jVfj. We then have:

m1 C � � � C md C � D 0

I Define the space QNk D X�Yk. Then Nk D
ˇ̌
QNk
ˇ̌
.

I By a counting argument,

m1 C 2km2 C � � � C dkmd D Nk
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Proof Outline II

Arrange this into a system of equations:
�

1 1 � � � 1 1
1 2 � � � d 0
1 22 � � � d2 0
:::

::: � � �
:::

:::

1 2d � � � dd 0

��
m1
m2
m3
:::

�

�

D

�
0
N1
N2
:::

Nd

�

Solve for � using Cramer’s rule.
Warning: determinant magic!
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Variations on a Theme of Matrices

You can just as reasonably solve for mj through the same process:

Theorem

If X and Y are finite sets, and f W X ! Y is a map such that any given fiber
has at most d elements, then for any positive integer j � d, the number of
points in the co-domain whose fiber has exactly j elements is

mj D

 
d
j

!
1
j

dX
iD1

.�1/iCjNi�i�1

�
1;
1
2

; � � � ;
1

j � 1
;

1
j C 1

; � � � ;
1
d

�
,

where Nk D
ˇ̌
X�Yk

ˇ̌
and �i denotes the ith elementary symmetric

polynomial on d � 1 elements.

Warning: (similar) determinant magic!
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The Fiber Signature

I Note that by calculating .m1; � � � ;md/ you know a profound amount
about the map.

I We refer to this value as the fiber signature.
I Trivially, if we have the fiber signature, we can calculate the size of

the value set.
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An Example Map

Example

1

2

3

4

5

1

2

3

4

5
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Example (Value Set Cardinality)

Example

j mj Nj �j
�
1; 1

2 ; 1
3

�
1 0 5 11=6
2 1 13 1
3 1 35 1=6

jVfj D 5 �
11
6

� 13 � 1 C 35 �
1
6

D 2.
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Example (Fiber Signature)

Example

j Nj �j�1
� 1
2 ; 1

3

�
�j�1

�
1; 1

3

�
�j�1

�
1; 1

2

�
1 5 1 1 1
2 13 5=6 4=3 3=2
3 35 1=6 1=3 1=2

m1 D

 
3
1

!
�
1
1

�

�
5 � 1 � 13 �

5
6

C 35 �
1
6

�
D 0

m2 D

 
3
2

!
�
1
2

�

�
�5 � 1 C 13 �

4
3

� 35 �
1
3

�
D 1

m3 D

 
3
3

!
�
1
3

�

�
5 � 1 � 13 �

3
2

C 35 �
1
2

�
D 1.
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Section 4

Counting the Value Set of Morphisms in Affine
Varieties
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One Dimensional Case

Corollary
Let a be a positive integer, p be a prime, q D pa, and f .x/ 2 FqŒx� be a
polynomial with positive degree d. There is a deterministic algorithm that
calculates the cardinality of the value set, jVfj in Fq, and more generally
the fiber signature of f, with computational complexity

QO
�
26d�1�4dC3d8dC1a2p1=2

�
bit operations,

where � D max .a; d.d C 1/=2e/.
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Proof Outline

I Surely there are no more than d elements in any given pre-image.
I The spaces we are looking at are thus of the form:

QNk D

n
.x1; � � � ; xk/ 2 Fk

q W f .x1/ D � � � D f .xk/
o

D

„

.x1; � � � ; xk/ 2 Fk
q

ˇ̌̌̌
ˇ̌̌̌
ˇ
f .x1/ � f .x2/ D 0
f .x1/ � f .x3/ D 0

:::

f .x1/ � f .xk/ D 0

…

I For Nk, apply the point counting algorithm to the polynomials for
g1 to gk�1, where

gi.x1; � � � ; xk/ D f .x1/ � f .xiC1/ .

I Calculate N1 to Nd and the relevant elementary symmetric
polynomials.

I PROFIT!
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General Case

Theorem
If there is a positive integer D so that

ˇ̌
. fjq/�1.y/

ˇ̌
� D for all y 2 Vf, then

there is a deterministic algorithm to calculate the cardinality of the value
set of fjq, and more generally the fiber signature of f, with computational
complexity

QO
�
2D.`CsCr/�sD.Dr C 2dC� C 2�/4Dr�3a2p1=2

�
bit operations,

where � D max .a; d.Dr C 1/=2e/ and dC D
PD`C.D�1/s

iD1 di.
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(My Apologies for) The General Case

I By hypothesis, there are no more than D elements in any given
pre-image.

I The spaces we are looking at are thus of the form:

QNk.Fq/ D

n�
x.1/; � � � ; x.k/

�
2 X.Fq/

k
W f
�
x.1/
�

D � � � D f
�
x.k/

�o

D

‚

�
x.1/; � � � ; x.k/

�
2
�
F r
q
�k
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

˛.x.1// D 0
:::

˛.x.k// D 0
f
�
x.1/
�

� f
�
x.2/

�
D 0

:::

f
�
x.1/
�

� f
�
x.k/

�
D 0

ƒ

I This is a total of k` C .k � 1/s polynomials, each in kr variables.
I Calculate N1 to ND, and scale by the relevant elementary

symmetric polynomials.
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A Lemma From Algebraic Geometry

Lemma
If f W X ! Y is a finite dominant morphism and O .X/ is generated by t
elements or fewer as an O .Y/-module (via the induced NFq-algebra
homomorphism f?), then

ˇ̌
f�1.y/

ˇ̌
� t for all y 2 Y. If X is irreducible, then

the fibers of f have cardinality at most the degree of f.
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Additional Corollaries I

Corollary
If X is irreducible and f is a finite dominant morphism from X to Y of fixed
degree d, then there is a deterministic algorithm to calculate the
cardinality of the value set of fjq, and more generally the fiber signature
of fjq, with computational complexity described in the prior theorem, with
D D d.

Corollary
If f is a finite dominant morphism, and O .X/ is generated by a set of t
elements from O .Y/ (via the induced NFq-algebra homomorphism f?), then
there is a deterministic algorithm to calculate the cardinality of the value
set of fjq, and more generally the fiber signature of fjq, with
computational complexity described in the prior theorem, with D D t.
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Additional Corollaries II

Corollary
If f is a finite dominant morphism from Ar

NFq
to Ar

NFq
of fixed degree d, then

there is a deterministic algorithm to calculate the cardinality of the value
set of fjq, and more generally the fiber signature of fjq, with
computational complexity

QO
�
22dr�rd.dr C 2dC� C 2�/4dr�3a2p1=2

�
bit operations,

where � D max .a; d.dr C 1/=2e/ and dC D
P.d�1/r

iD1 di.
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Section 5

Amortized Algorithms
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Amortized Across Many Characteristics

Theorem
Let r; s;N and R be positive integers. Let f be an s-tuple of polynomials
f .x/ D .f1.x/; � � � ; fs.x//, where fi.x/ D ZŒx1; � � � ; xr�, where the total
degree of fi is di.
If there is a positive integer D so that

ˇ̌̌�
fjpR

��1
.y/
ˇ̌̌

� D for all y 2 F s
pR and

for all primes p < N, then there is a deterministic algorithm to calculate
the cardinality of the value set of fjpw, and more generally the fiber
signature of fjpw, for all w � R and all primes p < N, with computational
complexity

QO
�
2D.8Dr2C17rCs/�sC1D4DrC8r4DrC6..D � 1/dC C 2/Dr.4DrC7/N log kfkC

ND2R2r2.D�1/s .4.D � 1/dC C 5/Dr
�
bit operations,

where dC D
Ps

iD1 di and kfk D
Qs

jD1 kfjk.
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Proof Outline

I Use the amortized cost zeta function calculation algorithm to find
all zeta functions for QNk;p.

I Extract the number of Fpw-rational points for each of these
varieties for all w � R.

I Apply the combinatorial results used previously.
I Larger scale profit
I (but at what cost?)
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Doubly Amortized: Single Variable Case

Corollary
Let N and R be positive integers and f be a polynomial f .x/ 2 ZŒx� of
positive degree d. There is a deterministic algorithm to calculate the
cardinality of the value set of fjpw, and more generally the fiber signature
for fjpw, for all positive integers w � R and for all primes p � N with
computational complexity

QO
�
2d.8dC18/d8d

2C18dC8N log kfk C NR223d�1d2dC2
�
bit operations.
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Fixed Single Variable Polynomial Case

�.N/ �
N

logN
.

I Divide by the number of expected values �.N/R.

Cor. Complexity (bit operations)

Single Value QO
�
R2N1=2

�
Amortized QO

�
R�1N1=2 C R logN

�
Doubly Amortized QO .R logN/
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Section 6

Conclusion
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Conclusion

I Adapted and analyzed point counting and zeta function calculation
algorithms.

I Combinatorial results linking the iterated fiber product and the
cardinality of the value set (and fiber signature).

I Calculation of the cardinality of the value set (and fiber signature)
for certain types of finite morphisms between affine varieties over
finite fields.

I Two types of “amortized cost” algorithms, whose cost per result is
excellent.
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Future Work

I Additional applications of the fiber signature.
I Adapt Harvey’s approach to the function field case.
I Refine dependence of asymptotic finding on the function degree.
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Thanks!

Randall Munroe, xkcd.com
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Colophon

I The principal font is Evert Bloemsma’s 2004 humanist san-serif
font Legato. This font is designed to be exquisitely readable, and
is a significant departure from the highly geometric forms that
dominate most san-serif fonts. Legato was Evert Bloemsma’s final
font prior to his untimely death at the age of 46.

I Mathematical symbols are from the MathTime Professional II
(MTPro2) fonts, a font package released in 2006 by the great
mathematical expositor Michael Spivak.

I The URLs are typeset in Luc(as) de Groot’s 2005 Consolas, a
monospace font with excellent readability.

I Diagrams were produced in TikZ.
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