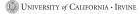
On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems)

Joshua Erin Hill

Department of Mathematics, University of California, Irvine

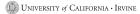
Dissertation Defense 2014-Oct-10 (rev. 1.01) http://untruth.org/s/p12.html

Unremitting Propaganda for Combinatorics (Apologies to Michael Spivak)



Section 1

Introduction



Outline

1 Introduction

- Problem Statement
- Prior Work: Single Variable Case

2 Point Counting and Weil Zeta Functions

- **3** Further Combinatorial Antics
- 4 Counting the Value Set of Morphisms in Affine Varieties
- 5 Amortized Algorithms
- 6 Conclusion

- Let $f: X \to Y$ be a map between finite sets.
- Denote the value set $V_f = \{f(\gamma) : \gamma \in X\}$.
- We are interested in the cardinality of V_f , which we denote $|V_f|$.
- Without constraints or structure, it isn't reasonable to expect any non-trivial algorithm.

- Let $f \in \mathbb{F}_q[x]$, of degree d > 0, where $q = p^a$.
- Denote the value set $V_f = \{f(\gamma) : \gamma \in \mathbb{F}_q\}$.
- This is the case that has been most studied.

Algebraic Varieties Defined Over Finite Fields

- ► X is an affine variety over $\overline{\mathbb{F}}_q$ defined by the simultaneous vanishing of the polynomials $(\alpha_1, \dots, \alpha_\ell) = \alpha \in (\mathbb{F}_q[x_1, \dots, x_r])^\ell$.
- Y is an affine subvariety of $\mathbb{A}^{s}_{\mathbb{F}_{a}}$.
- $(f_1, \dots, f_s) = f \in (\mathbb{F}_q[x_1, \dots, x_r])^s$, a morphism between X and Y.
- ► Denote the value set $V_f(\mathbb{F}_{q^k}) = \{f(\gamma) : \gamma \in X(\mathbb{F}_{q^k})\} \subset Y(\mathbb{F}_{q^k})$, and $V_f = V_f(\mathbb{F}_q)$.
- ▶ Note that the $\ell = 0$ case gives an important special case (and this along with r = 1 gives the prior case).
- ▶ By $f|_{q^k}$, we mean the function $f|_{X(\mathbb{F}_{q^k})} : X(\mathbb{F}_{q^k}) \to Y(\mathbb{F}_{q^k})$.

Outline

1 Introduction

- Problem Statement
- Prior Work: Single Variable Case
- 2 Point Counting and Weil Zeta Functions
- **3** Further Combinatorial Antics
- 4 Counting the Value Set of Morphisms in Affine Varieties
- 5 Amortized Algorithms
- 6 Conclusion

$$\left\lceil \frac{q}{d} \right\rceil \le |V_f| \le q$$

- These bounds are sharp!
- ▶ If $|V_f| = \begin{bmatrix} q \\ d \end{bmatrix}$, then *f* is a polynomial with a minimal value set.
- If $|V_f| = q$, then *f* is a permutation polynomial.

▶ We have two eventually positive real valued functions $A, B : \mathbb{N}^k \to \mathbb{R}^+$. Take **x** as an *n*-tuple, with **x** = (x_1, \ldots, x_n)

• We'll write $|\mathbf{x}|_{\min} = \min_i x_i$.

Definition

- 1. $A(\mathbf{x}) = O(B(\mathbf{x}))$ if there exists a positive real constant C and an integer N so that if $|\mathbf{x}|_{\min} > N$ then $A(\mathbf{x}) \leq CB(\mathbf{x})$.
- 2. $A(\mathbf{x}) = \tilde{O}(B(\mathbf{x}))$ if there exists a positive real constant C' so that $A(\mathbf{x}) = O(B(\mathbf{x}) \log^{C'}(B(\mathbf{x}) + 3))$

One can view the problem of finding $|V_f|$ as being a generalization of the problem of determining if a polynomial, f, is a permutation polynomial. There are a few algorithms for this, but the best is:

 Kayal provided a deterministic-polynomial-time test running in (d log q)^{O(1)}. [Kayal, 2005] How to calculate $|V_f|$?

- Evaluate f at each point in \mathbb{F}_q . Cost: $\tilde{O}(qd)$ bit operations.
- ► For each $a \in \mathbb{F}_q$, $a \in V_f \Leftrightarrow \deg \gcd(f(x) a, X^q X) > 0$. Cost: $\tilde{O}(qd)$ bit operations.

Section 2

Point Counting and Weil Zeta Functions

13/60

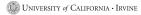
Consider the simultaneous zeros of a set of polynomials $f_1, \ldots, f_r \in \mathbb{F}_q[x_1, \ldots, x_n]$ over $\overline{\mathbb{F}}_q$; call this variety X.

• Let $X(\mathbb{F}_{q^k})$ denote the \mathbb{F}_{q^k} -rational points of X.

Definition

The Weil zeta function of the variety X is defined to be

$$Z_{X} = Z_{X}(T) = \exp\left(\sum_{k=1}^{\infty} \frac{\left|X(F_{q^{k}})\right|}{k}T^{k}\right)$$



- Weil conjectured that the zeta function is rational.
- ► This conjecture was first proven by Dwork in 1960 using *p*-adic methods, and then by Grothendieck in 1964 using *l*-adic cohomological methods.
- Approaches to building up Z_X generally start by calculating $|X(\mathbb{F}_{q^k})|$ up to a suitably large k (the maximal degree of the numerator or denominator).

Outline

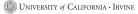
1 Introduction

Point Counting and Weil Zeta Functions Point Counting

- Computing the Weil Zeta Function
- Computing Many Weil Zeta Functions
- Point Counting From the Weil Zeta Function

3 Further Combinatorial Antics

- 4 Counting the Value Set of Morphisms in Affine Varieties
- 5 Amortized Algorithms



Corollary

Let a, n, and m be positive integers, p be a prime, $q = p^a$, $\lambda = \max(a, \lceil (n+1)/2 \rceil), f_1, \dots, f_m \in \mathbb{F}_q[x_1, \dots, x_n]$ be polynomials of positive degree, where each f_i has total degree d_i , and $d_+ = \sum_i d_i$. There is a deterministic algorithm that calculates the number of simultaneous solutions of $f_1(x_1, \dots, x_n) = \dots = f_m(x_1, \dots, x_n) = 0$ residing in \mathbb{F}_q^n in

$$ilde{O}\left(2^{n+m}(n+2d_+\lambda+2\lambda)^{4n}\lambda^3a^2p^{1/2}
ight)$$
 bit operations.

Harvey's Point Counting Algorithm: Specification

Time complexity:

$$\tilde{O}\left((n+2d\lambda)^{4n}\lambda^3a^2p^{1/2}\right)$$
 bit operations.

- We start by extracting a point counting algorithm from Harvey's zeta function calculation algorithm.
- ► Counts projective points cut out of an affine torus by a single degree *d* homogeneous polynomial, ${}^{h}f \in \mathbb{F}_{q}[x_{0}, x_{1}, \dots, x_{n}]$.
- Only works if $p \nmid d$.

Harvey's Point Counting Algorithm: Affine Points

Time complexity:

$$\tilde{O}\left(2^{n}(n+2d\lambda)^{4n}\lambda^{3}a^{2}p^{1/2}\right)$$
 bit operations.

- Let ${}^{h}f(x_0, \cdots, x_n) = x_0^d f(x_1/x_0, \cdots, x_n/x_0)$.
- ▶ Points where $x_0 \neq 0$ correspond to affine points (think: $x_0 = 1$).
- Characterize the points by which variables are 0: denote the set of variable indices that are 0 as S ⊂ {0, 1, · · · , n}.
- ► The polynomial ${}^{h}f$ with some variables set to 0 is still degree d (or identically 0), and cuts out a variety from the affine torus in projective space. The \mathbb{F}_q -rational points of this variety are denoted $X^{\text{proj}}(\mathbb{F}_q)^{S}$.
- The various selections of S induce a partition of the full set of points.

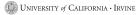
$$\left|X(\mathbb{F}_{q})
ight|=\sum_{S\subset\{1,\cdots,n\}}\left|X^{\operatorname{proj}}\left(\mathbb{F}_{q}
ight)^{S}
ight|.$$
 Wiversity of California - Irvine

Harvey's Point Counting Algorithm: Divisibility Fix

Time complexity:

$$\tilde{O}\left(2^n(n+2(d+1)\lambda)^{4n}\lambda^3a^2p^{1/2}\right)$$
 bit operations.

▶ If p | d, then count the points on $x_0^h f$, which has the same number of points in the affine torus.



Harvey's Point Counting Algorithm: Easy as P.I.E.

Time complexity:

$$\tilde{O}\left(2^{n+m}(n+2(d_++1)\lambda)^{4n}\lambda^3a^2p^{1/2}\right)$$
 bit operations.

Denote:

- ► the variety defined by the simultaneous zeros of polynomials f_1, \dots, f_m over $\overline{\mathbb{F}}_q$ as X,
- ▶ the polynomial $f_i(x) = \prod_{i \in I} f_i(x)$, for some index set $i \in \{1, \dots, m\}$,
- and the variety defined by the zeros of $f_I = \prod_{i \in I} f_i$ over $\overline{\mathbb{F}}_q$ as X_I .

The Principal of Inclusion/Exclusion then gives us

$$\left|X\left(\mathbb{F}_{q}\right)\right| = \sum_{\emptyset \neq l \subset \{1, \cdots, m\}} (-1)^{|l|-1} \left|X_{l}\left(\mathbb{F}_{q}\right)\right|.$$

💯 UNIVERSITY of CALIFORNIA • IRVINE

Outline

1 Introduction

2 Point Counting and Weil Zeta Functions

Point Counting

Computing the Weil Zeta Function

- Computing Many Weil Zeta Functions
- Point Counting From the Weil Zeta Function

3 Further Combinatorial Antics

- 4 Counting the Value Set of Morphisms in Affine Varieties
- 5 Amortized Algorithms

Corollary

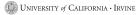
Let a, n, and m be positive integers, p be a prime, $q = p^a$, $\lambda = \max(a, \lceil (n+1)/2 \rceil)$, X be a variety over $\overline{\mathbb{F}}_q$ defined by the simultaneous vanishing set of the polynomials $f_1, \dots, f_m \in \mathbb{F}_q[x_1, \dots, x_n]$ with positive total degrees d_i . Denote $d_+ = \sum_i d_i$. There is a deterministic algorithm that calculates the zeta function of X in

$$\tilde{O}\left(2^{8n^2+17n+m}n^{4n+4}(d_++2)^{4n^2+7n}a^{4n+4}p^{1/2}\right)$$
 bit operations.

Time complexity:

$$\tilde{O}\left(2^{8n^2+16n}n^{4n+4}(d+1)^{4n^2+7n}a^{4n+4}p^{1/2}\right)$$
 bit operations.

- ► Computes the Weil zeta function of the projective variety cut out of an affine torus by a single degree *d* homogeneous polynomial, ${}^{h}f \in \mathbb{F}_{q}[x_{0}, x_{1}, \cdots, x_{n}].$
- Only works if $p \nmid d$.



Harvey's Weil Zeta Algorithm: Affine Variety

Time complexity:

$$\tilde{O}\left(2^{8n^2+17n}n^{4n+4}(d+1)^{4n^2+7n}a^{4n+4}p^{1/2}\right)$$
 bit operations.

- We follow the same as in the point counting algorithm.
- Homogenize *f*:

$${}^{h}f(x_{0},\cdots,x_{n})=x_{0}^{d}f(x_{1}/x_{0},\cdots,x_{n}/x_{0}).$$

- The polynomial ^hf with variables in S set to zero is still degree d (or identically 0), and cuts out a projective variety whose weil zeta function is denoted Z^S_{Xproj}(T).
- The analogous addition in every finite extension, which translates to multiplying the zeta functions.

$$Z_{\chi}(T) = \prod_{S \subset \{1, \cdots, n\}} Z^{S}_{\chi proj}(T).$$

$$(i) University of California \cdot Irvine$$

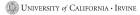
Harvey's Weil Zeta Algorithm: Divisibility Fix

Time complexity:

1

$$\tilde{O}\left(2^{8n^2+17n}n^{4n+4}(d+2)^{4n^2+7n}a^{4n+4}p^{1/2}\right)$$
 bit operations.

If p | d, then examine x₀^hf; the number of 𝔽_{q^k}-rational points on the variety cut by this polynomial from the affine torus in projective space is the same in every finite extension.



Harvey's Weil Zeta Algorithm: More P.I.E. Please!

Time complexity:

$$\tilde{O}\left(2^{8n^2+17n+m}n^{4n+4}(d_++2)^{4n^2+7n}a^{4n+4}p^{1/2}\right)$$
 bit operations.

For all positive integer k, the Principal of Inclusion/Exclusion then gives us

$$\left|X\left(\mathbb{F}_{q^{k}}\right)\right| = \sum_{\emptyset \neq I \subset \{1, \cdots, m\}} (-1)^{|I|-1} \left|X_{I}\left(\mathbb{F}_{q^{k}}\right)\right|.$$

 Addition of points corresponds to multiplication of zeta functions, and subtraction to division of zeta functions, so

$$Z_X(T) = \prod_{\emptyset \neq I \subset \{1, \cdots, m\}} Z_{X_I}(T)^{(-1)^{|I|-1}}.$$

UNIVERSITY of CALIFORNIA • IRVINE

Outline

1 Introduction

2 Point Counting and Weil Zeta Functions

- Point Counting
- Computing the Weil Zeta Function
- Computing Many Weil Zeta Functions
- Point Counting From the Weil Zeta Function
- **3** Further Combinatorial Antics
- 4 Counting the Value Set of Morphisms in Affine Varieties
- 5 Amortized Algorithms

Corollary

Let n, m, and N be positive integers, $f_1, \dots, f_m \in \mathbb{Z}[x_1, \dots, x_n]$ be polynomials with positive total degrees d_i and maximal coefficients $||f_i||$, with $||f|| = \prod_i ||f_i||$. For a prime p let X_p denote the affine variety defined over $\overline{\mathbb{F}}_p$ defined by the simultaneous vanishing set of all the p-reductions of the f_i . Denote $d_+ = \sum_i d_i$. There is a deterministic algorithm to calculate the zeta function for X_p for all p < N in

$$\tilde{O}\left(2^{8n^2+17n+m+1}n^{4n+6}(d_++2)^{4n^2+7n}N\log\|f\|\right)$$
 bit operations.

This proceeds from Harvey's original algorithm in exactly the same way as with the single zeta function computation algorithm.

Outline

1 Introduction

2 Point Counting and Weil Zeta Functions

- Point Counting
- Computing the Weil Zeta Function
- Computing Many Weil Zeta Functions
- Point Counting From the Weil Zeta Function

3 Further Combinatorial Antics

- 4 Counting the Value Set of Morphisms in Affine Varieties
- 5 Amortized Algorithms
- 6 Conclusion

Here and Back Again?

Recall:

$$Z_X(T) = \exp\left(\sum_{r\geq 1} \frac{|X(\mathbb{F}_{q^r})|}{r} T^r\right)$$
$$= \frac{g(T)}{h(T)},$$

where $g, h \in 1 + T\mathbb{Z}[T]$. Taking the logarithmic derivative of this expression yields

$$\sum_{r\geq 1} |X(\mathbb{F}_{q^r})| T^{r-1} = \frac{g'(T)}{g(T)} - \frac{h'(T)}{h(T)}.$$

UNIVERSITY of CALIFORNIA • IRVINE

Proposition

If $g \in 1 + T\mathbb{Z}[T]$, then the first R terms of the formal power series g'(T)/g(T) can be deterministically calculated in $\tilde{O}(R^2 \log ||g||)$ bit operations, where ||g|| denotes the maximum of the absolute values of the coefficients of g.

Proceeds via standard formal power series tools:

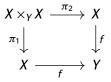
- Kronecker substitution for multiplication of polynomials.
- Sieveking-Kung for calculating (truncated) the formal power series inverse.

Section 3

Further Combinatorial Antics

33/60

The Fiber Product



In other words (in the category of sets):

$$X \times_Y X = \{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}.$$

Similarly, define

$$X^{\times_Y k} = \underbrace{X \times_Y \cdots \times_Y X}_{k \text{ terms}} = \left\{ (x_1, \cdots, x_k) \in X^k : f(x_1) = \cdots = f(x_k) \right\}.$$

UNIVERSITY of CALIFORNIA · IRVINE

Theorem

If X and Y are finite sets, and $f : X \rightarrow Y$ is a map such that any given fiber has at most d elements, then the cardinality of the image set of f is

$$|V_f| = \sum_{i=1}^d (-1)^{i-1} N_i \sigma_i \left(1, \frac{1}{2}, \cdots, \frac{1}{d}\right),$$

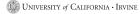
where $N_k = |X^{\times_Y k}|$ and σ_i denotes the *i*th elementary symmetric polynomial on d elements.

► $V_{f,i} = \{x \in V_f : |f^{-1}(x)| = i\}$ with $1 \le i \le d$ forms a partition of V_f . ► Let $m_i = |V_{f,i}|$. Thus $m_1 + \cdots + m_d = |V_f|$. Introduce a new value $\xi = -|V_f|$. We then have:

$$m_1+\cdots+m_d+\xi=0$$

- Define the space $\tilde{N}_k = X^{\times_{\forall} k}$. Then $N_k = |\tilde{N}_k|$.
- By a counting argument,

$$m_1 + 2^k m_2 + \dots + d^k m_d = N_k$$



Arrange this into a system of equations:

$$\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & \cdots & d & 0 \\ 1 & 2^2 & \cdots & d^2 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & 2^d & \cdots & d^d & 0 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ \vdots \\ \xi \end{pmatrix} = \begin{pmatrix} 0 \\ N_1 \\ N_2 \\ \vdots \\ N_d \end{pmatrix}$$

Solve for ξ using Cramer's rule. **Warning:** determinant magic!

You can just as reasonably solve for m_j through the same process:

Theorem

If X and Y are finite sets, and $f : X \rightarrow Y$ is a map such that any given fiber has at most d elements, then for any positive integer $j \leq d$, the number of points in the co-domain whose fiber has exactly j elements is

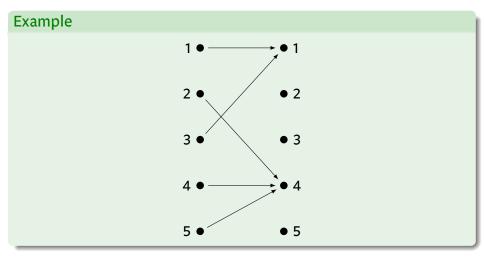
$$m_{j} = {\binom{d}{j}} \frac{1}{j} \sum_{i=1}^{d} (-1)^{i+j} N_{i} \sigma_{i-1} \left(1, \frac{1}{2}, \cdots, \frac{1}{j-1}, \frac{1}{j+1}, \cdots, \frac{1}{d}\right),$$

where $N_k = |X^{\times_Y k}|$ and σ_i denotes the *i*th elementary symmetric polynomial on d-1 elements.

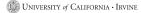
Warning: (similar) determinant magic!

- ▶ Note that by calculating (m_1, \dots, m_d) you know a profound amount about the map.
- We refer to this value as the fiber signature.
- Trivially, if we have the fiber signature, we can calculate the size of the value set.

An Example Map



j	mi	N;	$\sigma_j\left(1,\frac{1}{2},\frac{1}{3}\right)$		
	,	,	$0_{j}(1, 2, 3)$		
1	0	5	11/6		
2	1	13	1		
3	1	35	1/6		



Example (Fiber Signature)

Example

j	Nj	$\sigma_{j-1}\left(\frac{1}{2},\frac{1}{3}\right)$	$\sigma_{j-1}\left(1, \frac{1}{3}\right)$	$\sigma_{j-1}\left(1,\frac{1}{2}\right)$
1	5	1	1	1
2	13	5/6	4/3	3/2
3	35	1/6	1/3	1/2

$$m_{1} = {3 \choose 1} \cdot \frac{1}{1} \cdot \left(5 \cdot 1 - 13 \cdot \frac{5}{6} + 35 \cdot \frac{1}{6}\right) = 0$$
$$m_{2} = {3 \choose 2} \cdot \frac{1}{2} \cdot \left(-5 \cdot 1 + 13 \cdot \frac{4}{3} - 35 \cdot \frac{1}{3}\right) = 1$$
$$m_{3} = {3 \choose 3} \cdot \frac{1}{3} \cdot \left(5 \cdot 1 - 13 \cdot \frac{3}{2} + 35 \cdot \frac{1}{2}\right) = 1.$$

Section 4

Counting the Value Set of Morphisms in Affine Varieties

43/60

Let a be a positive integer, p be a prime, $q = p^a$, and $f(x) \in \mathbb{F}_q[x]$ be a polynomial with positive degree d. There is a deterministic algorithm that calculates the cardinality of the value set, $|V_f|$ in \mathbb{F}_q , and more generally the fiber signature of f, with computational complexity

$$ilde{O}\left(2^{6d-1}\lambda^{4d+3}d^{8d+1}a^2p^{1/2}
ight)$$
 bit operations,

where $\lambda = \max(a, \lceil (d+1)/2 \rceil)$ *.*

Proof Outline

Surely there are no more than *d* elements in any given pre-image.
The spaces we are looking at are thus of the form:

$$\tilde{N}_{k} = \left\{ (x_{1}, \cdots, x_{k}) \in \mathbb{F}_{q}^{k} : f(x_{1}) = \cdots = f(x_{k}) \right\}$$
$$= \left\{ (x_{1}, \cdots, x_{k}) \in \mathbb{F}_{q}^{k} \middle| \begin{array}{c} f(x_{1}) - f(x_{2}) &= 0 \\ f(x_{1}) - f(x_{3}) &= 0 \\ \vdots \\ f(x_{1}) - f(x_{k}) &= 0 \end{array} \right.$$

For N_k, apply the point counting algorithm to the polynomials for g₁ to g_{k-1}, where

$$g_i(x_1, \cdots, x_k) = f(x_1) - f(x_{i+1})$$
.

- Calculate N_1 to N_d and the relevant elementary symmetric polynomials.
- PROFIT!

UNIVERSITY of CALIFORNIA • IRVINE

Theorem

If there is a positive integer \mathcal{D} so that $|(f|_q)^{-1}(y)| \leq \mathcal{D}$ for all $y \in V_f$, then there is a deterministic algorithm to calculate the cardinality of the value set of $f|_q$, and more generally the fiber signature of f, with computational complexity

$$ilde{O}\left(2^{\mathcal{D}(\ell+s+r)-s}\mathcal{D}(\mathcal{D}r+2d_+\lambda+2\lambda)^{4\mathcal{D}r}\lambda^3a^2p^{1/2}
ight)$$
 bit operations,

where $\lambda = \max(a, \lceil (\mathcal{D}r+1)/2 \rceil)$ and $d_+ = \sum_{i=1}^{\mathcal{D}\ell + (\mathcal{D}-1)s} d_i$.

UNIVERSITY of CALIFORNIA • IRVINE

(My Apologies for) The General Case

- ► By hypothesis, there are no more than *D* elements in any given pre-image.
- The spaces we are looking at are thus of the form:

$$\tilde{N}_{k}(\mathbb{F}_{q}) = \left\{ \begin{pmatrix} x^{(1)}, \cdots, x^{(k)} \end{pmatrix} \in X(\mathbb{F}_{q})^{k} : f\left(x^{(1)}\right) = \cdots = f\left(x^{(k)}\right) \right\}$$
$$= \left\{ \begin{pmatrix} x^{(1)}, \cdots, x^{(k)} \end{pmatrix} \in \left(\mathbb{F}_{q}^{r}\right)^{k} \middle| \begin{array}{c} \alpha(x^{(1)}) = 0 \\ \vdots \\ \alpha(x^{(k)}) = 0 \\ f\left(x^{(1)}\right) - f\left(x^{(2)}\right) = 0 \\ \vdots \\ f\left(x^{(1)}\right) - f\left(x^{(k)}\right) = 0 \end{array} \right\}$$

- This is a total of $k\ell + (k-1)s$ polynomials, each in kr variables.
- Calculate N₁ to N_D, and scale by the relevant elementary symmetric polynomials.
 WNIVERSITY of CALIFORNIA · IRVINE

Lemma

If $f: X \to Y$ is a finite dominant morphism and $\mathcal{O}(X)$ is generated by t elements or fewer as an $\mathcal{O}(Y)$ -module (via the induced $\overline{\mathbb{F}}_q$ -algebra homomorphism f^*), then $|f^{-1}(y)| \leq t$ for all $y \in Y$. If X is irreducible, then the fibers of f have cardinality at most the degree of f.

If X is irreducible and f is a finite dominant morphism from X to Y of fixed degree d, then there is a deterministic algorithm to calculate the cardinality of the value set of $f|_q$, and more generally the fiber signature of $f|_q$, with computational complexity described in the prior theorem, with $\mathcal{D} = d$.

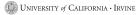
Corollary

If f is a finite dominant morphism, and $\mathcal{O}(X)$ is generated by a set of t elements from $\mathcal{O}(Y)$ (via the induced $\overline{\mathbb{F}}_q$ -algebra homomorphism f*), then there is a deterministic algorithm to calculate the cardinality of the value set of $f|_q$, and more generally the fiber signature of $f|_q$, with computational complexity described in the prior theorem, with $\mathcal{D} = t$.

If f is a finite dominant morphism from $\mathbb{A}^r_{\overline{\mathbb{F}}_q}$ to $\mathbb{A}^r_{\overline{\mathbb{F}}_q}$ of fixed degree d, then there is a deterministic algorithm to calculate the cardinality of the value set of $f|_q$, and more generally the fiber signature of $f|_q$, with computational complexity

$$ilde{O}\left(2^{2dr-r}d(dr+2d_+\lambda+2\lambda)^{4dr}\lambda^3a^2p^{1/2}
ight)$$
 bit operations,

where $\lambda = \max(a, \lceil (dr+1)/2 \rceil)$ and $d_+ = \sum_{i=1}^{(d-1)r} d_i$.



Section 5

Amortized Algorithms

51/60

Theorem

Let r, s, N and R be positive integers. Let f be an s-tuple of polynomials $f(x) = (f_1(x), \dots, f_s(x))$, where $f_i(x) = \mathbb{Z}[x_1, \dots, x_r]$, where the total degree of f_i is d_i .

If there is a positive integer \mathcal{D} so that $\left|\left(f\right|_{p^R}\right)^{-1}(y)\right| \leq \mathcal{D}$ for all $y \in \mathbb{F}_{p^R}^s$ and for all primes p < N, then there is a deterministic algorithm to calculate the cardinality of the value set of $f|_{p^w}$, and more generally the fiber signature of $f|_{p^w}$, for all $w \leq R$ and all primes p < N, with computational complexity

$$\tilde{O}\left(2^{\mathcal{D}(8\mathcal{D}r^{2}+17r+s)-s+1}\mathcal{D}^{4\mathcal{D}r+8}r^{4\mathcal{D}r+6}((\mathcal{D}-1)d_{+}+2)^{\mathcal{D}r(4\mathcal{D}r+7)}N\log\|f\|+N\mathcal{D}^{2}R^{2}r2^{(\mathcal{D}-1)s}(4(\mathcal{D}-1)d_{+}+5)^{\mathcal{D}r}\right) \text{ bit operations,}$$

where $d_{+} = \sum_{i=1}^{s} d_{i}$ and $||f|| = \prod_{j=1}^{s} ||f_{j}||$.

- ► Use the amortized cost zeta function calculation algorithm to find all zeta functions for $\tilde{N}_{k,p}$.
- ► Extract the number of \mathbb{F}_{p^w} -rational points for each of these varieties for all $w \leq R$.
- Apply the combinatorial results used previously.
- Larger scale profit
- (but at what cost?)

Let N and R be positive integers and f be a polynomial $f(x) \in \mathbb{Z}[x]$ of positive degree d. There is a deterministic algorithm to calculate the cardinality of the value set of $f|_{p^w}$, and more generally the fiber signature for $f|_{p^w}$, for all positive integers $w \leq R$ and for all primes $p \leq N$ with computational complexity

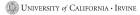
$$ilde{O}\left(2^{d(8d+18)}d^{8d^2+18d+8}N\log\|f\|+NR^22^{3d-1}d^{2d+2}
ight)$$
 bit operations.

Fixed Single Variable Polynomial Case

$$\pi(N) \sim \frac{N}{\log N}.$$

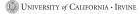
• Divide by the number of expected values $\pi(N)R$.

Cor.	Complexity (bit operations)
Single Value	$\tilde{O}\left(R^2N^{1/2}\right)$
Amortized	$\tilde{O}\left(R^{-1}N^{1/2} + R\log N\right)$ $\tilde{O}\left(R\log N\right)$
Doubly Amortized	Õ(RlogN)



Section 6

Conclusion

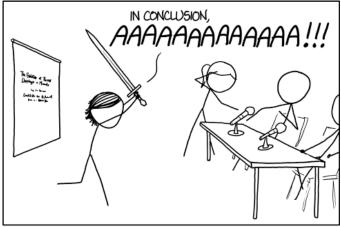


56/60

- Adapted and analyzed point counting and zeta function calculation algorithms.
- Combinatorial results linking the iterated fiber product and the cardinality of the value set (and fiber signature).
- Calculation of the cardinality of the value set (and fiber signature) for certain types of finite morphisms between affine varieties over finite fields.
- Two types of "amortized cost" algorithms, whose cost per result is excellent.

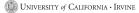
- Additional applications of the fiber signature.
- Adapt Harvey's approach to the function field case.
- Refine dependence of asymptotic finding on the function degree.

Thanks!



THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.

Randall Munroe, xkcd.com



- The principal font is Evert Bloemsma's 2004 humanist san-serif font Legato. This font is designed to be exquisitely readable, and is a significant departure from the highly geometric forms that dominate most san-serif fonts. Legato was Evert Bloemsma's final font prior to his untimely death at the age of 46.
- Mathematical symbols are from the MathTime Professional II (MTPro2) fonts, a font package released in 2006 by the great mathematical expositor Michael Spivak.
- The URLs are typeset in Luc(as) de Groot's 2005 Consolas, a monospace font with excellent readability.
- Diagrams were produced in TikZ.

