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Introduction

I Presentation of the paper “Ideal forms of Coppersmith’s theorem
and Guruswami-Sudan list decoding” by Henry Cohn and Nadia
Heninger

I Includes significant material from “Using LLL-Reduction for Solving
RSA and Factorization Problems: A Survey” by Alexander May
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Henry Cohn

I is a principal researcher at Microsoft Research New England, and
an affiliate professor at the MIT department of mathematics.

I is interested in discrete geometry, coding theory, cryptography,
combinatorics, computational and analytic number theory, and
theoretical computer science.

I is not Henri Cohen.
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Nadia Heninger

(photo by Jacob Appelbaum)

I is a graduate student in computer science at Princeton University
and is currently a visiting graduate student at MIT.

I is one of the authors of the very interesting paper “Lest We
Remember: Cold Boot Attacks on Encryption Keys”.

I presented this paper at the Crypto 2010 rump session.
I is also not Henri Cohen.
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Don Coppersmith

I described this original theorem in his 1997 paper “Small solutions
to polynomial equations, and low exponent RSA vulnerabilities”.

I has had a profoundly wide-ranging impact on both the theory and
practice of cryptography (e.g., helped design the DES S-boxes,
and was one of the designers of the AES submission MARS)
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Lattice Definition

I Much of the work involves computations over lattices.
I Starting definition:

.
Definition..
......A lattice is an additive discrete subgroup of Rn that spans Rn.

I This can be thought of as a free Z-module.
I Example:
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Basis of a Lattice

I If L is an n-dimensional lattice, it has n basis elements.
I There are an infinite number of possible bases

They are not all equally good!
We prefer a basis where the basis elements are as short as possible
(under the `2 norm).

• A basis made up of minimum-length vectors is called reduced.

We prefer a basis where the basis elements are close to orthogonal
(using the standard inner product).

I Example of a (suboptimal) basis:
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Determinant of a Lattice

I Given a basis to an n-dimensional lattice, we can arrange the basis
elements into an n � n matrix, and take the determinant of that
matrix.

I This can be thought of as calculating the (signed) n-volume of the
fundamental parallelepiped.

The fundamental parallelepiped is a shape defined by the lattice
that can be tiled to cover all of Rn.
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The determinant of a lattice is (up to sign) independent of choice of
basis.
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Getting a “Good” Basis

I Sadly this is a very hard problem.
I Finding the shortest vector in a lattice (SVP) is hard.

Even finding a vector that is “too close” is not RP-time unless
RP D NP

I All bases for a lattice have the same determinant, so if we have the
shortest basis possible, its elements are “nearly orthogonal”.

I A polynomial time algorithm is desired
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Lenstra-Lenstra-Lovász to the Rescue

I In 1982 LLL introduced:
A new notion of “reduced” called “LLL-reduced”.
A polynomial-time algorithm that produces an LLL-reduced lattice
basis from any basis.

I LLL-reduced:
.
Definition..

......

Let fbig
n
iD1 be a basis for the lattice L,

˚
b�

i

	n

iD1
be the corresponding

Gram-Schmidt orthogonal basis, and �i;j be the component of bi

along b�
j . A basis b1; : : : ; bn is LLL-reduced ifˇ̌

�i;j

ˇ̌
�

1
2
for 1 � j < i � n and

b�

i C �i;i�1b
�
i�1



2
�

3
4



b�
i�1



2 for 1 < i � n (The Lovász condition)
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The LLL Reduced Basis: Not “Good”, but “Good
Enough”

I The Lovász condition assures that if two adjacent vectors are
swapped prior to the Gram-Schmidt orthogonalization, the norm
can’t decrease too much.

I It’s not really clear how this is related to the Shortest Vector
Problem until you examine some consequences. The ones we need
are:

kb1k � 2
n�1

4 det .L/
1
n

For all x 2 L with x ¤ 0; kb1k � 2
n�1

2 kxk

I The second consequence is telling us that we “almost” have a
solution to the SVP.

Hill (UC Irvine) Coppersmith’s Theorem Number Theory Seminar 14 / 50
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The LLL Algorithm: Born to Run

I The LLL algorithm takes a lattice basis, and produces a
corresponding LLL-reduced lattice basis.

LLL runs in (worst case) O
�
n6 log3

.maxi kbi k/
�
.

In practice, it generally does better than this.

I A toy example:
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The LLL Algorithm: To Infinity (and beyond!)

I The LLL algorithm has many, many uses.
I Want more information?

There’s always Wikipedia...

...
Perhaps not...

I Try some good books:
A Course in Computational Algebraic Number Theory by Henri
Cohen
The LLL Algorithm edited by Phong Q. Nguyen and Brigitte Vallée
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The LLL Algorithm: Wikipedia
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Coppersmith’s Theorem

A rephrasing of Coppersmith’s original theorem:
.
Theorem (Coppersmith-Howgrave-Graham-May)
..

......

Let f .x/ be a monic polynomial of degree d with coefficients modulo
an integer N > 1, and ˇ 2 .0; 1�. One can find all integers such that

jwj � N
ˇ2

d and gcd .f .w/; N / � N ˇ in time polynomial in logN and d .

I Note that if we set ˇ D 1, then we get all sufficiently small
solutions where f .w/ � 0 .mod N /.
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Outline of Proof I

I k is chosen to help satisfy a bounding lemma.
I If an integer B divides N and also divides f .w/, then Bk divides

wj f .w/iN k�i .
I Q.x/ D

P
i;j ai;j xj f .x/iN k�i D

P
i qix

i .
I If we can get a suitable lower bound for B, we are done. Why?

If jQ.w/j < N ˇk � Bk and Q.w/ � 0 .mod Bk/ then Q.w/ D 0.

I Find w by factoring Q.x/ over the integers (this is polynomial time
by Berlekamp-Zassenhaus-van Hoeij)
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Outline of Proof II

I We bound our desired roots: jwj < X and apply the triangle
inequality, giving us jQ.w/j �

P
i jqi jX

i < N ˇk

I This is done by finding a suitably short vector in the the lattice
generated by the coefficients of polynomials of the form
.xX/j f .xX/iN k�i .

I The LLL algorithm will produce just such a vector.
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Applications of Coppersmith’s Theorem

Coppersmith’s theorem can be used to:
I Attack stereotyped messages in RSA (sending messages whose

difference is less than N
1
e can compromise RSA)

I Security proof of RSA-OAEP (constructive security proof).
I Affine Padding
I Polynomially related RSA messages (sending the same message to

multiple recipients)
I Factoring N D pq if the high bits of p are known.
I An algorithm that can get the private key for RSA in deterministic

polynomial time can be used to factor N in deterministic
polynomial time.

I Finding integers with a large smooth factor in a proscribed interval.
I Finding roots of modular multivariate polynomials (heuristic)
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Impediments to Generalization

I The notion of size must be established. (here: the absolute value)
I The notion of a vector norm must be generalized. (here: the `1

norm)
I The lattice that we are working must be established (here: an

integer lattice)
I The polynomial time method of extracting a suitably short vector

must be established (here: LLL)
I The method of factoring the resulting polynomial must occur in

polynomial time. (here: Berlekamp-Zassenhaus-van Hoeij)
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Get There From Here: Polynomial Rings

I Comparison: z-degree of the polynomial.
I Vector Norm: the maximal z-degree of the polynomials in the

vector (this is a non-Archimedean norm)
I Lattice: a polynomial lattice (F Œz� is a ring, so the lattice is a free

F Œz�-module of finite rank.)
I Finding the shortest vector is much easier in this context.
I SVP can be solved in polynomial time

This true for all non-Archimedean norms; the SVP reduces to
solving a system of linear equations.

I Factoring bi-variate polynomials must occur in polynomial time
This is the case for Q, number fields, finite fields (in RP-time)
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The SVP in a Polynomial Lattice

I A set of basis vectors is column-reduced if the degree of the
determinant of the lattice is equal to the sum of the degrees of the
basis vectors.

I A set of column-reduced basis vectors always contains a shortest
vector for the lattice.

I Column basis reduction of an m-dimensional lattice can be carried
out in m!Co.1/D field operations, where D is the maximal degree
column vector in the lattice and ! is the run time exponent for
matrix multiplication. The best known exponent is for
Coppersmith-Winograd (! D 2:376) and the largest reasonable
value would be ! D 3 (for naïve matrix multiplication).

I The analogous determinant inequality for our calculated shortest
vector, v, is degz v < 1

m
degz det.L/
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Proof for Polynomial Rings

This proof is very similar to the integer case!
I k is chosen to help satisfy a bounding lemma.
I If b.z/ divides p.z/ and also divides f .w.z//, then b.z/k divides

w.z/j f .w.z//ip.z/k�i .
I Q.x/ D

P
i;j ai;j .z/xj f .x/ip.z/k�i D

P
i qi .z/xi .

I If we can get a suitable lower bound for b.z/, we are done. Why?
If degz Q.w.z// < nˇk � k degz b.z/ and Q.w.z// � 0 .mod b.z/k/

then Q.w.z// D 0.
Bound the upper degree, `, of any root that we will get.
Construct a polynomial lattice of coefficient vectors of the form
.xz`/j f .xz`/i p.z/k�i , find the shortest vector.
This vector can be used to satisfy the desired bound.

I Find w.z/ by factoring Q.x/
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. . . . . .

Application: Guruswami-Sudan

I Guruswami-Sudan is an algorithm for list decoding of
Reed-Solomon codes

Codes generally return the most likely message. In some cases
there isn’t a single “best message”.
List decoding instead provides a list of likely messages, one of
which is likely correct.

I Each (likely) code word is a root of a constructed polynomial. This
theorem extracts these code words.

I The same error rate bounds are attained as in Guruswami-Sudan.
I Runtime is improved.

The (original) first stage of Guruswami-Sudan runs in O.n15/ (worst
case)
This theorem provides a worst case bound of O

�
n7:752Co.1/d

�
.

The previously best known method ran in (heuristically conjectured)
time O.n8/.
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Number Fields I

I A number field, K, is a finite extension of Q

I K D Q.˛/, for some ˛ algebraic over Q (by the PET).
I m˛.x/ (the minimal polynomial) is the minimal degree monic

polynomial with a root at ˛.
ŒK W Q� D degm˛.x/ D n

m˛.x/ D .x � ˛1/ : : : .x � ˛n/ with ˛i 2 C

I Q.˛/ D
˚
a0 C a1˛ C : : : C an�1˛n�1 W ai 2 Q

	
I Each root corresponds to an embedding of Q.˛/ into C

�i is the map ˛ 7! ˛i , extended Q-linearly.
If there are r1 real roots and r2 complex (conjugate) root pairs,
n D r1 C 2r2
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. . . . . .

Size I

I With all these embedding, how do we establish a notion of size?
For each embedding of K into C, we have a different “size”,
namely j
 ji D j�i .
/j.
There are r1 C r2 distinct such “sizes”.
No one embedding is “the correct one”, so we must use them all.
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Algebraic Ring of Integers

I If K is analogous to Q, what is analogous to Z?
I Z has the field of quotients Q.

In number fields, there can be many such subrings. Which would we
choose?

I We could also look at the algebraic numbers...
Roots of monic polynomials with integer coefficients

I Those algebraic numbers which are in K are called the algebraic
integers, denoted OK.

I The algebraic integers form a subring of our number field.
I OQ D Z.
I OK is a free Z module of rank n (generators !1; : : : ; !n).

Finding such a basis is hard (See the algorithms of Zassenhaus or
van Hoeij). We assume such an integral basis is known.
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Size II

I Another notion of size is the norm of an element: if 
 2 K then
N.
/ D

Qn
iD1 �i .
/.

I In OK, this is especially nice: 
 2 OK, 
 ¤ 0 then
N.
/ D jOK=
OK j.

I This last notion suggests the general meaning for ideals of OK: if I

is a non-zero ideal of OK, then N.I / D jOK=I j.
I This norm is multiplicative.
I We can’t ignore the absolute values. OK may contain infinite units

(elements of norm 1).
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Lattice Analog

I We’ll examine finitely generated OK-submodules of Kr , which
we’ll call ƒ.

I This may not have a basis, but it will have a pseudo-basis:
v1; : : : ; vs 2 ƒ and ideals I1; : : : ; Is � OK so that
ƒ D I1v1 C : : : C Isvs.

I We can apply an analog of LLL (due to Fieker and Stehlé), by
embedding as a Z-lattice.

I We apply only the first portion of this algorithm, which finds a set
of short module elements.
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The Embedding

I First, the notion of an embedding of OK into Rr1 ˚ C2r2

�.!/ D
�
�j .!i /

�
i;j

D

0BBB@
�1.!1/ �2.!1/ � � � �n.!1/

�1.!2/ �2.!2/ � � � �n.!2/
:::

:::

�1.!n/ �2.!n/ � � � �n.!n/

1CCCA
I Every element of OK is a Z-linear combination of these rows.
I A principal ideal .
/ embeds as �.!/

�
ıi;j �i .
/

�
i;j

I An ideal B generated by the integral basis b1; : : : ; bn is embedded
as

�.b/ D
�
�j .bi /

�
i;j

I This embeds into Rn.
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A Number Field Analog to Coppersmith’s Theorem

.
Theorem (Cohn-Heninger)
..

......

Let K be a number field of degree n with ring of integers OK,
f .x/ 2 OK Œx� a monic polynomial of degree d , and I ¨ OK an ideal of
OK. For ˇ 2 .0; 1� and �1; : : : ; �n > 0 we can find all w 2 OK with
jwji < �i such that N ..f .w/OK C I // > N.I /ˇ provided thatQ

i �i < N.I /ˇ2=d in time polynomial in d , and exponential in n2.
Further, if we can bound

Q
i �i < .2 C o.1//�n2=2N.I /ˇ2=d then we can

find all such w.
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Get There from Here: Number Fields

I Comparison: Norm.
I Vector Norm: A `1 norm in our embedded space.
I Lattice: finitely generated OK-submodules of Kr .
I LLL in our embedding (first part of Fieker-Stehlé)
I Polynomials over number fields can be factored in polynomial time

(Lenstra)
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Proof for Number Fields

I k is chosen to help satisfy a bounding lemma.
I Generate Q.x/ using terms of the form xj f .x/iI k�i

I We wish to bound our possible roots:
Bounding is with respect to all of the r1 C r2 distinct absolute
values.
These bounds are the �i

I Find a suitable short vector using LLL.
I The LLL produced-short vector (mapped back) is such a bound.
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Applications (Number Fields)

I Solve some instances of the bounded-distance-decoding problem
in number fields.

I Generating smooth numbers over number fields (generalizing
Boneh’s approach)
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Function Fields I

I A function field is a finite extension of the field Fq.x/.
I � is an algebraic curve over Fq which is smooth, projective, and

irreducible over the algebraic closure of Fq.
I �.Fq/ is the set of points of �, with coordinates in Fq.
I K is the field of rational functions on � defined over Fq.
I S is a non-empty subset of �.Fq/, and OS is the subring of K with

poles confined to S.
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Function Fields II

I Every point in �.Fq/ corresponds to a valuation, which produces
an absolute value jf jp D q�vp.f /.

I The norm of f 2 OS is N.f / D
Q

p2S jf jp.
I The Riemann-Roch space is L.D/ D f0g [ ff 2 K� W .f / C D � 0g

If the coefficient of p 2 D is k, then f can have a pole of order at
most k at the point p.
This is a finite dimensional Fq-vector space.

I Running time bounds rely on the ability to efficiently compute
bases of the Riemann-Roch spaces for divisors of �.

This works for smooth plane curves
This is reasonable for applications (Encoding problem for
algebraic-geometric codes requires a basis for a Riemann-Roch
space)
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A Function Field Analog to Coppersmith’s Theorem

.
Theorem (Cohn-Heninger)
..

......

Let � be a smooth, projective, absolutely irreducible algebraic curve
over Fq, and let K be its function field over Fq. Let D be a divisor on �

whose support is contained in the Fq-rational points �.Fq/, let S be a
subset of �.Fq/ that properly contains the support for D, let OS

denote the subring of K consisting of functions with poles only in S,
and let L.D/ be the Riemann-Roch space. Let f .x/ 2 OS Œx� be a monic
polynomial of degree d , and let I be a proper ideal in OS . Then we can
find all w 2 L.D/ such that N.gcd.f .w/OS ; I // � N.I /ˇ , provided that
qdeg.D/ < N.I /ˇ2=d . These can be found in probabilistic polynomial
time.
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Application (Function Fields)

When S contains a single point, this is equivalent to Guruswami-Sudan
list decoding for any algebraic-geometric code.
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Summary of Talk I

I Learned a bit about Lattices
I Learned about LLL

The meaning of an LLL-reduced lattice basis.
Why LLL is useful
The runtime of the LLL algorithm

I Learned about Coppersmith’s Theorem
An outline of the proof
Some Applications

I Learned a generalization of Coppersmith’s Theorem to polynomial
rings

An outline of the proof
Some Applications
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Summary of Talk II

I Learned some background on Number Fields
I Introduced a number-field analog to Coppersmith’s Theorem and

discussed applications
I Summarized a function-field analog to Coppersmith’s Theorem

and discussed an application

Hill (UC Irvine) Coppersmith’s Theorem Number Theory Seminar 48 / 50



. . . . . .

Fin

I Questions?
I Comments? This is my first seminar presentation. Please provide

any input on:
the level of the presentation
logistics and typesetting

I Presentation materials and slides are here:
http://bit.ly/CuSmith

I Thanks!
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Colophon

I The principal font is Evert Bloemsma’s 2004 humanist san-serif
font Legato. This font is designed to be exquisitely readable, and
is a significant departure from the highly geometric forms that
dominate most san-serif fonts. Legato was Evert Bloemsma’s final
font prior to his untimely death at the age of 46.

I Equations are typeset using the MathTime Professional II (MTPro2)
fonts, a font package released in 2006 by the great mathematical
expositor Michael Spivak.

I The serif text font in this presentation is Jean-François Porchez’s
wonderful 2002 Sabon Next typeface. Sabon Next is a redesign of
Jan Tschichold’s 1967 Sabon, which is in turn based on Claude
Garamond’s 16th century typefaces.

I The URLs are typeset in Luc(as) de Groot’s 2005 Consolas, a
monospace font with excellent readability.

I Diagrams were produced in Mathematica.
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