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Introduction

» Presentation of the paper “Ideal forms of Coppersmith’s theorem
and Guruswami-Sudan list decoding” by Henry Cohn and Nadia
Heninger

» Includes significant material from “Using LLL-Reduction for Solving
RSA and Factorization Problems: A Survey” by Alexander May
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Henry Cohn

» is a principal researcher at Microsoft Research New England, and
an affiliate professor at the MIT department of mathematics.

> is interested in discrete geometry, coding theory, cryptography,
combinatorics, computational and analytic number theory, and
theoretical computer science.

» is not Henri Cohen.
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Nadia Heninger

/

(photo by Jacob Appelbaum)

» is a graduate student in computer science at Princeton University
and is currently a visiting graduate student at MIT.

» is one of the authors of the very interesting paper “Lest We
Remember: Cold Boot Attacks on Encryption Keys”.

» presented this paper at the Crypto 2010 rump session.
» is also not Henri Cohen. J;l UNIVERSITY of CALIFORNIA » IRVINE
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Don Coppersmith

» described this original theorem in his 1997 paper “Small solutions
to polynomial equations, and low exponent RSA vulnerabilities”.

» has had a profoundly wide-ranging impact on both the theory and
practice of cryptography (e.g., helped design the DES S-boxes,
and was one of the designers of the AES submission MARS)
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Lattice Definition

» Much of the work involves computations over lattices.
» Starting definition:

Definition
A lattice is an additive discrete subgroup of R” that spans R”. J

» This can be thought of as a free Z-module.
> Example:
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Basis of a Lattice

» If L is an n-dimensional lattice, it has n basis elements.
» There are an infinite number of possible bases

m They are not all equally good!
m We prefer a basis where the basis elements are as short as possible
(under the £2 norm).

+ A basis made up of minimum-length vectors is called reduced.

m We prefer a basis where the basis elements are close to orthogonal
(using the standard inner product).

» Example of a (suboptimal) basis:

iy
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Determinant of a Lattice

» Given a basis to an n-dimensional lattice, we can arrange the basis
elements into an n x n matrix, and take the determinant of that
matrix.

» This can be thought of as calculating the (signed) n-volume of the
fundamental parallelepiped.

m The fundamental parallelepiped is a shape defined by the lattice
that can be.tiled to cover all of R”.

m The determinant of a lattice is (up to sign) independent of choice of
basis.
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Getting a “Good” Basis

v

Sadly this is a very hard problem.
Finding the shortest vector in a lattice (SVP) is hard.

m Even finding a vector that is “too close” is not RP-time unless
RP = NP

\

\

All bases for a lattice have the same determinant, so if we have the
shortest basis possible, its elements are “nearly orthogonal”.

v

A polynomial time algorithm is desired
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Lenstra-Lenstra-Lovasz to the Rescue

» In 1982 LLL introduced:

m A new notion of “reduced” called “LLL-reduced”.
m A polynomial-time algorithm that produces an LLL-reduced lattice
basis from any basis.
» LLL-reduced:
Definition
Let {b;}_, be a basis for the lattice L, {b}}’_, be the corresponding
Gram-Schmidt orthogonal basis, and p;,; be the component of b;
along b;f. A basis by, ..., b, is LLL-reduced if

1 . .
W |pij|<3forl<j<i<nand

m b+ piisb, |7 = 2 b2, |* for 1 <i < n (The Lovasz condition)

v
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The LLL Reduced Basis: Not “Good”, but “Good

Enough”

» The Lovasz condition assures that if two adjacent vectors are
swapped prior to the Gram-Schmidt orthogonalization, the norm
can’t decrease too much.

» It’s not really clear how this is related to the Shortest Vector

Problem until you examine some consequences. The ones we need
are:

m by <25 det (L)7
m Forallx € L withx #£ 0, [by[| < 2"7" |x|

» The second consequence is telling us that we “almost” have a
solution to the SVP.
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The LLL Algorithm: Born to Run

» The LLL algorithm takes a lattice basis, and produces a
corresponding LLL-reduced lattice basis.

m LLL runs in (worst case) O (n6 log® (max; [|b; ||)).
m In practice, it generally does better than this.

> A toy example:
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The LLL Algorithm: To Infinity (and beyond!)

» The LLL algorithm has many, many uses.
» Want more information?
m There’s always Wikipedia...
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The LLL Algorithm: Wikipedia
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LLL Algorithm [edit]
The following description is based on (Cohen 2000, Algorithm 2.6.3),
INPUT:

[ a lattice basis by, by, ..., b, € 7
1
> parameter d with — < § < 1
4
PROCEDURE:
Perform Gram-Schmidt:
o b} == by, By = (b}, b})

« forifrom2 tondo

o b =1b;
« forjfrom1toi—1do
)

Done

UNIVERSITY of CALIFORNIA - IRVINE

mber Theory Seminar 17/ 50

Hill (UC Irvine)



The LLL Algorithm: To Infinity (and beyond!)

» The LLL algorithm has many, many uses.
» Want more information?

m There’s always Wikipedia...
E ..
m Perhaps not...

» Try some good books:

m A Course in Computational Algebraic Number Theory by Henri
Cohen
m The LLL Algorithm edited by Phong Q. Nguyen and Brigitte Vallée
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Coppersmith’s Theorem

A rephrasing of Coppersmith’s original theorem:

Theorem (Coppersmith-Howgrave-Graham-May)

Let f(x) be a monic polynomial of degree d with coefficients modulo
an mteger N > 1, and B € (0, 1]. One can find all integers such that

lw| < N d and ged (f(w), N) > NP in time polynomial in log N and d.

» Note that if we set 8 = 1, then we get all sufficiently small
solutions where f(w) =0 (mod N).
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Outline of Proof |

v

k is chosen to help satisfy a bounding lemma.

If an integer B divides N and also divides f(w), then B¥ divides

wj f(w)iNk—i

> 0(x) = Z aljxjf(x)lNk ! =2 qix'

If we can get a suitable lower bound for B, we are done. Why?
m If |Q(w)| < NP¥ < B¥ and Q(w) = 0 (mod B¥) then Q(w) = 0.

Find w by factoring Q(x) over the integers (this is polynomial time
by Berlekamp-Zassenhaus-van Hoeij)

v

v

v
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Outline of Proof Ii

> We bound our desired roots: |w| < X and apply the triangle
inequality, givingus [Q(w)| <), [¢:| X' < NBk

» This is done by finding a suitably short vector in the the lattice
generated by the qoefﬁcients of polynomials of the form
(xX)/ f(xX) Nk,

» The LLL algorithm will produce just such a vector.
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Applications of Coppersmith’s Theorem

Coppersmith’s theorem can be used to:
» Attack stereotyped messages in RSA (sending messages whose
difference is less than N ¢ can compromise RSA)
» Security proof of RSA-OAEP (constructive security proof).
» Affine Padding

» Polynomially related RSA messages (sending the same message to
multiple recipients)

» Factoring N = pq if the high bits of p are known.

» An algorithm that can get the private key for RSA in deterministic
polynomial time can be used to factor N in deterministic
polynomial time.

» Finding integers with a large smooth factor in a proscribed interval.
» Finding roots of modular multivariate polynomials (heuristic)
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Impediments to Generalization

» The notion of size must be established. (here: the absolute value)

» The notion of a vector norm must be generalized. (here: the ¢;
norm)

» The lattice that we are working must be established (here: an
integer lattice)

» The polynomial time method of extracting a suitably short vector
must be established (here: LLL)

» The method of factoring the resulting polynomial must occur in
polynomial time. (here: Berlekamp-Zassenhaus-van Hoeij)
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Get There From Here: Polynomial Rings

» Comparison: z-degree of the polynomial.

» Vector Norm: the maximal z-degree of the polynomials in the
vector (this is a non-Archimedean norm)

» Lattice: a polynomial lattice (F|[z] is a ring, so the lattice is a free
F[z]-module of finite rank.)
» Finding the shortest vector is much easier in this context.

» SVP can be solved in polynomial time

m This true for all non-Archimedean norms; the SVP reduces to
solving a system of linear equations.

» Factoring bi-variate polynomials must occur in polynomial time
m This is the case for Q, number fields, finite fields (in RP-time)
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The SVP in a Polynomial Lattice

» A set of basis vectors is column-reduced if the degree of the
determinant of the lattice is equal to the sum of the degrees of the
basis vectors.

> A set of column-reduced basis vectors always contains a shortest
vector for the lattice.

» Column basis reduction of an m-dimensional lattice can be carried
out in m@*t°(M P field operations, where D is the maximal degree
column vector in the lattice and w is the run time exponent for
matrix multiplication. The best known exponent is for
Coppersmith-Winograd (w = 2.376) and the largest reasonable
value would be w = 3 (for naive matrix multiplication).

» The analogous determinant inequality for our calculated shortest

vector, v, is deg, v < - deg, det(L)
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Proof for Polynomial Rings

This proof is very similar to the integer case!
» k is chosen to help satisfy a bounding lemma.
> Ifb(z) divides.p(z) and also divides f(w(z)), then b(z)* divides
w(z)! f(w(2)) p(z) .

> 0(x) = jaij ()% f) p) T =3, qi(2)x".

» If we can get a suitable lower bound for 5(z), we are done. Why?
m Ifdeg, O(w(z)) < npk < kdeg, b(z) and Q(w(z)) =0 (mod b(z)¥)

then Q(w(z)) = 0.

m Bound the upper degree, ¢, of any root that we will get.
m Construct a polynomial lattice of coefficient vectors of the form

(xz%)7 f(xz% p(z)k~, find the shortest vector.
m This vector can be used to satisfy the desired bound.

» Find w(z) by factoring Q(x)
.';1 UNIVERSITY of CALIFORNIA - IRVINE
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Application: Guruswami-Sudan

» Guruswami-Sudan is an algorithm for list decoding of
Reed-Solomon codes
m Codes generally return the most likely message. In some cases
there isn’t a single “best message”.
m List decoding instead provides a list of likely messages, one of
which is likely correct.

» Each (likely) code word is a root of a constructed polynomial. This
theorem extracts these code words.

» The same error rate bounds are attained as in Guruswami-Sudan.

» Runtime is improved.
m The (original) first stage of Guruswami-Sudan runs in O(n'>) (worst

case)
m This theorem provides a worst case bound of O (n7752t°( ),
m The previously best known method ran in (heuristically conjectured)

time O(n?®).
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Number Fields |

A number field, K, is a finite extension of Q

K = Q(«), for some « algebraic over Q (by the PET).
mg(x) (the minimal polynomial) is the minimal degree monic
polynomial with a root at «.
B [K:Q] =degmy(x) =n
Bmy(x) =(x—a1)...(x —ay) withe; € C
Q) ={ao+ara+ ...+ ap—10" ' 1 a; € Q}
Each root corresponds to an embedding of Q(«) into C
B 0; is the map « — «;, extended Q-linearly.

m If there are r; real roots and r, complex (conjugate) root pairs,
n=ry+2r

v

vy

vy
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» With all these embedding, how do we establish a notion of size?
m For each embedding of K into C, we have a different “size”,

namely |y|; = |oi(y)|.
m There are rq + r, distinct such “sizes”.
m No one embedding is “the correct one”, so we must use them all.

LQ_.} UNIVERSITY of CALIFORNIA - IRVINE

Hill (UC Irvine) Coppersmith’s Theorem Number Theory Seminar 32/50



Algebraic Ring of Integers

» If K is analogous to QQ, what is analogous to Z?
» 7 has the field of quotients Q.

m In number fields, there can be many such subrings. Which would we
choose?

» We could also look at the algebraic numbers...
m Roots of monic polynomials with integer coefficients
> Those algebraic numbers which are in K are called the algebraic
integers, denoted Ok.
» The algebraic integers form a subring of our number field.
> Og = Z.
» (O is afree Z module of rank n (generators ws, ..., wy,).

m Finding such a basis is hard (See the algorithms of Zassenhaus or
van Hoeij). We assume such an integral basis is known.
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» Another notion of size is the norm of an element: if y € K then
N(@y) = [Ti=1 0i ().

> In Ok, this is especially nice: y € Ok, y # 0 then
N(y) = |0k /yOk]|.

» This last notion suggests the general meaning for ideals of Og: if I
is a non-zero ideal of Ok, then N(I) = |Ok/I]|.

» This norm is multiplicative.

» We can’t ignore the absolute values. @ may contain infinite units
(elements of norm 1).
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Lattice Analog

» We’ll examine finitely generated O g -submodules of K", which

we’ll call A.
» This may not have a basis, but it will have a pseudo-basis:
mv,...,vs € Aandideals I,...,I; C Ok so that

A=ThLv+...+ L.

» We can apply an analog of LLL (due to Fieker and Stehlé), by
embedding as a Z-lattice.

» We apply only the first portion of this algorithm, which finds a set
of short module elements.
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The Embedding

> First, the notion of an embedding of Ok into R @ C?"2

o1(w1) o2(w1) -+ on(wy)
(@) = (Gj(a)i))i’j: o1(w2) 02(w3) -+ Gn(Qz)
o1(wn) o02(wn) -+ onlwp)

» Every element of Ok is a Z-linear combination of these rows.
> A principal ideal (y) embeds as o (w) (5;,;0i (v)), ;

An ideal B generated by the integral basis b4, ..., b, is embedded
as

v

o(b) = (Gj (bi))i,j

v

This embeds into R”.
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A Number Field Analog to Coppersmith’s Theorem

Theorem (Cohn-Heninger)

Let K be a number field of degree n with ring of integers Ok,

f(x) € Ok[x] a monic polynomial of degree d, and I < Ok an ideal of
Ok.ForB € (0,1]and A1,..., A, > 0we can find all w € Og with

lw|; < A; such that N ((f(w)Ok + I)) > N(I)? provided that

[1; Ai < N(1)#*/? in time polynomial in d, and exponential in n2.
Further, if we can bound [T, ; < (2 + o(1))™/2N(I)#*/4 then we can
find all such w.
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Get There from Here: Number Fields

Comparison: Norm.

Vector Norm: A £1 norm in our embedded space.
Lattice: finitely generated Qg -submodules of K”.
LLL in our embedding (first part of Fieker-Stehlé)

Polynomials over number fields can be factored in polynomial time
(Lenstra)

Yy vy Yy VY Yy
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Proof for Number Fields

> k is chosen to help satisfy a bounding lemma.

Generate Q(x) using terms of the form x/ f(x)! 1%~
We wish to bound our possible roots:

m Bounding is with respect to all of the r; + r; distinct absolute
values.
m These bounds are the A;

vy

\

Find a suitable short vector using LLL.
The LLL produced-short vector (mapped back) is such a bound.

\
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Applications (Number Fields)

» Solve some instances of the bounded-distance-decoding problem
in number fields.

» Generating smooth numbers over number fields (generalizing
Boneh’s approach)
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Function Fields |

v

A function field is a finite extension of the field F,(x).

x is an algebraic curve over F, which is smooth, projective, and
irreducible over the algebraic closure of I, .

x(Fy) is the set of points of y, with coordinates in .
K is the field of rational functions on y defined over F,.

S is a non-empty subset of x(IF,), and O is the subring of K with
poles confined to S.

v

\

\

v
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Function Fields Il

Every point in x(IF,) corresponds to a valuation, which produces
an absolute value | f|, = ¢ 7?7\,

The norm of f € Os is N(f) =[] ,es [/ p-
The Riemann-Roch spaceis £(D) = {0} U{f € K*: (f)+ D > 0}
m If the coefficient of p € D is k, then f can have a pole of order at

most k at the point p.
m This is a finite dimensional F,-vector space.

\

v

v

\

Running time bounds rely on the ability to efficiently compute
bases of the Riemann-Roch spaces for divisors of y.
m This works for smooth plane curves
m This is reasonable for applications (Encoding problem for
algebraic-geometric codes requires a basis for a Riemann-Roch
space)
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A Function Field Analog to Coppersmith’s Theorem

Theorem (Cohn-Heninger)

Let y be a smooth, projective, absolutely irreducible algebraic curve
over [y, and let K be its function field over ;. Let D be a divisor on x
whose support is contained in the F,-rational points x(FF,), let S be a
subset of x(IF,) that properly contains the support for D, let Og
denote the subring of K consisting of functions with poles only in S,
and let £(D) be the Riemann-Roch space. Let f(x) € Os[x] be a monic
polynomial of degree d, and let I be a proper ideal in Og. Then we can
find all w € £(D) such that N(gcd(f(w)Os, 1)) > N(I)#, provided that
q9sD) < N(1)B*/4 These can be found in probabilistic polynomial
time.
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Application (Function Fields)

When S contains a single point, this is equivalent to Guruswami-Sudan
list decoding for any algebraic-geometric code.
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Summary of Talk |

Learned a bit about Lattices
Learned about LLL

m The meaning of an LLL-reduced lattice basis.
m Why LLL is useful
m The runtime of the LLL algorithm

vy

\

Learned about Coppersmith’s Theorem

m An outline of the proof
m Some Applications

v

Learned a generalization of Coppersmith’s Theorem to polynomial
rings

m An outline of the proof

m Some Applications
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Summary of Talk Il

» Learned some background on Number Fields

» Introduced a number-field analog to Coppersmith’s Theorem and
discussed applications

» Summarized a function-field analog to Coppersmith’s Theorem
and discussed an application
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» Questions?

» Comments? This is my first seminar presentation. Please provide
any input on:
m the level of the presentation
m logistics and typesetting

» Presentation materials and slides are here:

LQ_.} UNIVERSITY of CALIFORNIA - IRVINE

Hill (UC Irvine) Coppersmith’s Theorem Number Theory Seminar 49/ 50
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Colophon

» The principal font is Evert Bloemsma’s 2004 humanist san-serif
font Legato. This font is designed to be exquisitely readable, and
is a significant departure from the highly geometric forms that
dominate most san-serif fonts. Legato was Evert Bloemsma’s final
font prior to his untimely death at the age of 46.

» Equations are typeset using the MathTime Professional Il (MTPro2)
fonts, a font package released in 2006 by the great mathematical
expositor Michael Spivak.

» The serif text font in this presentation is Jean-Francois Porchez’s
wonderful 2002 Sabon Next typeface. Sabon Next is a redesign of
Jan Tschichold’s 1967 Sabon, which is in turn based on Claude
Garamond’s 16th century typefaces.

» The URLs are typeset in Luc(as) de Groot’s 2005 Consolas, a
monospace font with excellent readability.

» Diagrams were produced in Mathematica. 45 UNVERSITY of CaLIFORNIA - InVINE
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