Block Ciphers Modes of Use, DES and AES

#### Joshua E. Hill

Department of Mathematics, University of California, Irvine

Math 235A October 29 & 31, 2012 November 14 & 16, 2012 http://bit.ly/U0talq v1.1



1/113

### 1 Introduction

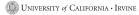
- 2 Block Cipher Modes of Operation
- **3** Block Cipher Construction



### Who am I, anyway?

- Ph.D. candidate.
  - Area: Algorithmic Algebraic Number Theory
  - Advisor: Daqing Wan
- B.S. Computer Science (Cal Poly, San Luis Obispo)
- Worked at an information security consulting firm for 10 years.
  - I evaluated security products against various government standards.
  - I've looked at many, many products.

A block cipher is a family of bijective functions, indexed by the key  $k \in \mathcal{K}$ . We call these families "encrypt" ( $e_k$ ) and "decrypt" ( $d_k$ ):


 $e_k: \mathcal{M} \to \mathcal{C}$  $d_k: \mathcal{C} \to \mathcal{M}$ 

- For block ciphers,  $\mathcal{M}$  and  $\mathcal{C}$  are the same set.
- Every element of these sets are b-bit (binary) strings for some fixed b.
- ► This length, *b*, is called the block size.



We will discuss:

- A variety of common and (sometimes) reasonable-to-use block cipher modes of use (this class and next).
- Some explicit examples of block cipher construction (starting November 14, 2012):
  - DES
  - AES

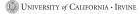


#### 1 Introduction

#### 2 Block Cipher Modes of Operation

- Block oriented Confidentiality Modes
- Stream-cipher-like Confidentiality Modes
- Data Integrity Modes
- Combined Confidentiality / Integrity Modes
- Block Cipher Modes of Operation Conclusion

#### **3** Block Cipher Construction


We'll discuss a few of the more common and useful modes of use:

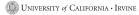
- Block oriented Confidentiality Modes:
  - ECB
  - CBC
- Stream-cipher-like Confidentiality Modes
  - OFB
  - CTR
- Data Integrity Modes
  - CBC-MAC
  - CMAC
- Combined Confidentiality / Integrity Modes
  - CCM



### Subsection 1

## Block oriented Confidentiality Modes

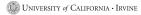



- ► The basic cipher, without modification.
- Split the plaintext into blocks, and encrypt each block independently.



- No inter-dependency between blocks.
- Bit errors render the rest of the block uncontrollably corrupted.
- Encryption of identical plaintext blocks under the same key yield identical ciphertext blocks.
  - Exposes plaintext structural information.
  - Susceptible to attacker blockwise modification.

- I am a member of the MAA
- In Nomathistan, being a member of the MAA is punishable by death.
- > When traveling, I thus must encrypt my pro-math propaganda:


# Math is Great!!!



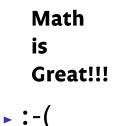
- I am a member of the MAA
- In Nomathistan, being a member of the MAA is punishable by death.
- > When traveling, I thus must encrypt my pro-math propaganda:

# Math is Great!!!





- I am a member of the MAA
- In Nomathistan, being a member of the MAA is punishable by death.
- > When traveling, I thus must encrypt my pro-math propaganda:


# Math is Great!!!

DES ECB



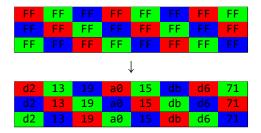
- I am a member of the MAA
- In Nomathistan, being a member of the MAA is punishable by death.
- > When traveling, I thus must encrypt my pro-math propaganda:

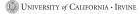
DES ECB





### What just happened?


- We mainly had two styles of blocks:
  - White parts


| FF |
|----|----|----|----|----|----|----|----|
|    | FF | FF |    | FF | FF |    | FF |
| FF |    | FF | FF |    | FF | FF | FF |

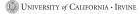


### What just happened?

- We mainly had two styles of blocks:
  - White parts



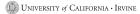



## **ECB:** Post Mortem

#### What just happened?

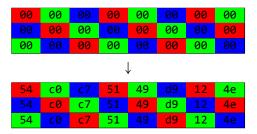
#### We mainly had two styles of blocks:

Black parts

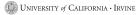

| 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
|----|----|----|----|----|----|----|----|
| 00 | 00 | 00 | 00 | 00 | 00 |    | 00 |
| 00 |    | 00 | 00 |    | 00 | 00 | 00 |



### What just happened?


- We mainly had two styles of blocks:
  - Black parts

| 00           | 00 | 00 | 00 | 00 | 00 | 00 | 00 |  |
|--------------|----|----|----|----|----|----|----|--|
| 00           | 00 | 00 | 00 | 00 | 00 |    | 00 |  |
| 00           |    | 00 | 00 |    | 00 | 00 | 00 |  |
|              |    |    |    |    |    |    |    |  |
| $\downarrow$ |    |    |    |    |    |    |    |  |
| 54           | с0 | с7 | 51 | 49 | d9 | 12 | 4e |  |
| 54           | с0 | с7 | 51 | 49 | d9 |    | 4e |  |
| 54           |    | с7 | 51 |    | d9 | 12 | 4e |  |




### What just happened?

- We mainly had two styles of blocks:
  - Black parts



Structural information is exposed to an adversary.



- Blocks can be reordered.
- Reordering or repetition of blocks can change the message.
- Any ciphertext encrypted with the same key can be used as source material for the attacker.
- ECB security is dependent on the plaintext data formatting!

#### Plaintext

| From: King Claud |
|------------------|
| ius To: The King |
| of England Plea  |
| se help me kill  |
| my nephew Hamlet |
| . Please send me |
| evidence with my |
| loyal chattel:   |
| my men Rosencra  |
| ntz & Guildenste |
| rn.              |



21/113

# ECB: The Rosencrantz & Guildenstern Affair

| Plaintext        |         | Ciphertext                       |  |  |
|------------------|---------|----------------------------------|--|--|
| From: King Claud |         | 90d1dac87eca9f739b2fa23dff7af501 |  |  |
| ius To: The King |         | 66e6a94a67b88c471f82321e5d32f4e4 |  |  |
| of England Plea  |         | 54e13d9dbfd2a391f23b3f7904e6f789 |  |  |
| se help me kill  |         | 9c38b26e40c6a25000c145b49b783d42 |  |  |
| my nephew Hamlet | AES ECB | ce62406ec7d8e2c21323083c4a2c2d62 |  |  |
| . Please send me | >       | ce95c814f1005e468f1f8a2eaa3ab52b |  |  |
| evidence with my |         | 8a824c1b8ac2a007efc733ddc6684a3c |  |  |
| loyal chattel:   |         | 7aa0438c10f0d68114715094ba1e79c0 |  |  |
| my men Rosencra  |         | bd812a6b8b9b4e7f8abe36f067c9fb4c |  |  |
| ntz & Guildenste |         | 3724d63b1f8555baa42347fbd2da793d |  |  |
| rn.              |         | 0b41dc57dd4b626372c244548e31871a |  |  |



# ECB: The Rosencrantz & Guildenstern Affair

Reordered Ciphertext

90d1dac87eca9f739b2fa23dff7af501

66e6a94a67b88c471f82321e5d32f4e4

54e13d9dbfd2a391f23b3f7904e6f789

9c38b26e40c6a25000c145b49b783d42

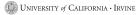
bd812a6b8b9b4e7f8abe36f067c9fb4c

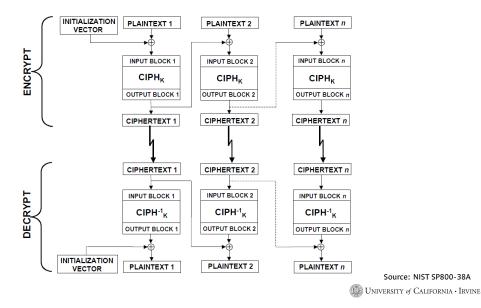
3724d63b1f8555baa42347fbd2da793d

0b41dc57dd4b626372c244548e31871a

ce95c814f1005e468f1f8a2eaa3ab52b

8a824c1b8ac2a007efc733ddc6684a3c


7aa0438c10f0d68114715094ba1e79c0


ce62406ec7d8e2c21323083c4a2c2d62

| <b>Resulting Plaintext</b> |                  | Reordered Ciphertext             |
|----------------------------|------------------|----------------------------------|
| From: King Claud           |                  | 90d1dac87eca9f739b2fa23dff7af501 |
| ius To: The King           |                  | 66e6a94a67b88c471f82321e5d32f4e4 |
| of England Plea            |                  | 54e13d9dbfd2a391f23b3f7904e6f789 |
| se help me kill            |                  | 9c38b26e40c6a25000c145b49b783d42 |
| my men Rosencra            | $(AES ECB)^{-1}$ | bd812a6b8b9b4e7f8abe36f067c9fb4c |
| ntz & Guildenste           | <                | 3724d63b1f8555baa42347fbd2da793d |
| rn.                        |                  | 0b41dc57dd4b626372c244548e31871a |
| . Please send me           |                  | ce95c814f1005e468f1f8a2eaa3ab52b |
| evidence with my           |                  | 8a824c1b8ac2a007efc733ddc6684a3c |
| loyal chattel:             |                  | 7aa0438c10f0d68114715094ba1e79c0 |
| my nephew Hamlet           |                  | ce62406ec7d8e2c21323083c4a2c2d62 |



- Uses a 1-block initial vector (IV)
- IV is XORed with plaintext before encryption
- ► For later blocks, uses the prior ciphertext as the IV





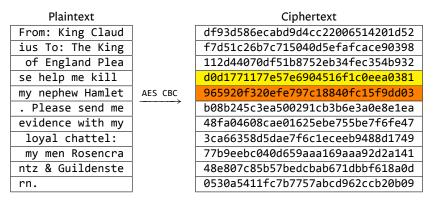
## **CBC Notes**

- Encrypting the same plaintext under the same key produces different ciphertext, so long as the block IV is different
  - Different IV choice
  - Different prior plaintext
  - In the instance of IV collision, structural information is revealed (as with ECB).
- IV must be unpredictable (but need not be secret) but IV integrity should be assured.
- No error should be issued if padding is invalid. (n.b. Vaundenay, 2002)
- In the event of an error:
  - Block associated with change is fully corrupted.
  - Next block has changes to plaintext that are the error XOR the original plaintext.
  - Future blocks uncorrupted.

# CBC: The Rosencrantz & Guildenstern Affair

#### IV = a73c7304715b7ab1a4ec61b72c495963

#### Plaintext


| From: King Claud |
|------------------|
| ius To: The King |
| of England Plea  |
| se help me kill  |
| my nephew Hamlet |
| . Please send me |
| evidence with my |
| loyal chattel:   |
| my men Rosencra  |
| ntz & Guildenste |
| rn.              |

- Want to change M1 = "my nephew Hamlet" to M2 = "my butter cookie".
- Calculate A = M1 ⊕ M2 = 0000000c10041c0005002b0e02070c11.
- > XOR the prior ciphertext block with *A*.

UNIVERSITY of CALIFORNIA · IRVINE

# CBC: The Rosencrantz & Guildenstern Affair

#### IV = a73c7304715b7ab1a4ec61b72c495963



- Want to change M1 = "my nephew Hamlet" to M2 = "my butter cookie".
- Calculate A = M1 ⊕ M2 = 000000c10041c0005002b0e02070c11.
- XOR the prior ciphertext block with A.

UNIVERSITY of CALIFORNIA • IRVINE

# CBC: The Rosencrantz & Guildenstern Affair

Modified Ciphertext

df93d586ecabd9d4cc22006514201d52

f7d51c26b7c715040d5efafcace90398

112d44070df51b8752eb34fec354b932

d0d1771d67e16269015144120ced0f90

965920f320efe797c18840fc15f9dd03

b08b245c3ea500291cb3b6e3a0e8e1ea

48fa04608cae01625ebe755be7f6fe47

3ca66358d5dae7f6c1eceeb9488d1749

77b9eebc040d659aaa169aaa92d2a141

48e807c85b57bedcbab671dbbf618a0d

0530a5411fc7b7757abcd962ccb20b09

| <b>Resulting Plaintext</b> |                  | Modified Ciphertext              |
|----------------------------|------------------|----------------------------------|
| From: King Claud           |                  | df93d586ecabd9d4cc22006514201d52 |
| ius To: The King           |                  | f7d51c26b7c715040d5efafcace90398 |
| of England Plea            |                  | 112d44070df51b8752eb34fec354b932 |
| öÍ.æ6.õ.ÓRû.É{             |                  | d0d1771d67e16269015144120ced0f90 |
| my butter cookie           | $(AES CBC)^{-1}$ | 965920f320efe797c18840fc15f9dd03 |
| . Please send me           | ·                | b08b245c3ea500291cb3b6e3a0e8e1ea |
| evidence with my           |                  | 48fa04608cae01625ebe755be7f6fe47 |
| loyal chattel:             |                  | 3ca66358d5dae7f6c1eceeb9488d1749 |
| my men Rosencra            |                  | 77b9eebc040d659aaa169aaa92d2a141 |
| ntz & Guildenste           |                  | 48e807c85b57bedcbab671dbbf618a0d |
| rn.                        |                  | 0530a5411fc7b7757abcd962ccb20b09 |

# The Birthday Paradox, Writ Large

- We model most cryptographic primitives as random mappings.
- For many of our uses, it is interesting when a new output is equal to an old output; this is called a collision.
- What is the probability that some output is equal to a prior output after *j* outputs have been produced?
- Probability of "no collision" is easier to address, and then take the complement. After *j* outputs:

$$Pr(collision) = 1 - \prod_{k=0}^{j-1} \left(1 - \frac{k}{2^{b}}\right)$$
$$= 1 - \frac{(2^{b})(2^{b} - 1)(2^{b} - 2)\cdots(2^{b} - j + 1)}{2^{bj}}$$
$$= 1 - \frac{(2^{b})^{j}}{2^{bj}}$$
UNIVERSITY of CALIFORNIA - IRVINE

- Recall  $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ ; so long as x is close to 0,  $e^x \approx 1 + x$ .
- The terms in our product look like  $1 \frac{k}{2^b}$ .
- To approximate we set  $1 \frac{k}{2^b} = 1 + x$  and find that  $x = -\frac{k}{2^b}$ .
- This yields the approximation:

$$\Pr(\text{collision}) \approx 1 - \prod_{k=0}^{j-1} e^{k/2^{b}} = 1 - \exp\left(-\frac{(j)(j-1)}{2^{b+1}}\right)$$

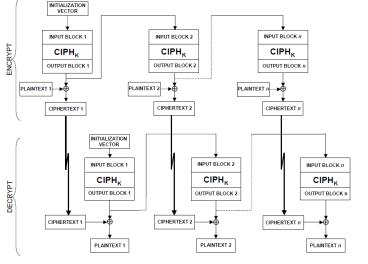
• So long as  $j \ll 2^b$ , this approximation remains quite reasonable.

| Block Size | Pr(              | collisio         | n)              |
|------------|------------------|------------------|-----------------|
|            | 2 <sup>-40</sup> | 2 <sup>-20</sup> | 2 <sup>-1</sup> |
| 64         | 2 <sup>11</sup>  | 2 <sup>21</sup>  | 2 <sup>31</sup> |
| 128        | 2 <sup>43</sup>  | 2 <sup>53</sup>  | 2 <sup>63</sup> |

Table : Allowed Outputs for Target Collision Probability



### Subsection 2


#### Stream-cipher-like Confidentiality Modes



35 / 113

- A stream cipher mode that can encrypt arbitrary blocks of data (though specified to work 1 block at a time)
- IV is the initial cipher input.
- Output of cipher is the keystream, and is XORed with the plaintext to create the ciphertext.
- Prior keystream becomes the next IV

# **OFB** Diagram

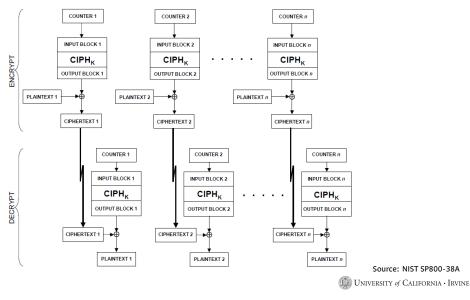


Source: NIST SP800-38A

UNIVERSITY of CALIFORNIA • IRVINE

- Uses cipher in encrypt mode only
- Keystream is in no way affected by the plaintext
- Anytime there is an IV collision under the same key, the produced keystream is the same.
- In the instance of (Key,IV) collision, *all future* plaintexts are revealed, and the corresponding past plaintexts.
- ► IV must be a nonce, that is, it must only occur once per key.
- In the event of an error:
  - Bitwise equivalent changes occur in the corresponding plaintext.
  - Blocks after the altered block are unaffected.
  - An attacker can perform bit-level targeted modification to the plaintext.




# **Cycles Within Cycles**

- There is absolutely no external input into the keystream generation process after initialization.
- Once a keystream block repeats, the keystream generation is trapped in a cycle, and cannot recover.
- If the attacker XORs two blocks of ciphertext that used the same keystream, the result is two plaintexts XORed (this is considered decrypted).
- Cycle detection isn't cheap or fast (and is thus not commonly done).
- How many blocks should be encrypted with a single key?


| Pr(collision) |                  |                  |                 |  |  |  |  |  |  |
|---------------|------------------|------------------|-----------------|--|--|--|--|--|--|
| Block Size    | 2 <sup>-40</sup> | 2 <sup>-20</sup> | 2 <sup>-1</sup> |  |  |  |  |  |  |
| 64            | 2 <sup>11</sup>  | 2 <sup>21</sup>  | 2 <sup>31</sup> |  |  |  |  |  |  |
| 128           | 2 <sup>43</sup>  | 2 <sup>53</sup>  | 2 <sup>63</sup> |  |  |  |  |  |  |

- A stream cipher mode that can encrypt arbitrary blocks of data (though specified to work 1 block at a time)
- Intended as a safer and more predictable version of OFB mode.
  - Instead of using prior keystream as the next cipher input, uses a counter.
  - The counter increments in some defined way.
  - The counter can not be allowed to repeat under the same key.
- Output of cipher is the keystream, and is XORed with the plaintext to create the ciphertext.

# **CTR** Diagram



- Uses cipher in encrypt mode only
- Keystream is in no way affected by the plaintext
- Anytime there is a counter collision under the same key, the produced keystream is the same.
- In the instance of (Key,Counter) collision, all future plaintexts are revealed, and the corresponding past plaintexts.
- In the event of an error:
  - Bitwise equivalent changes occur in the corresponding plaintext.
  - Blocks after the altered block are unaffected.
  - An attacker can perform bit-level targeted modification to the plaintext.



# Stream Ciphers: The Rosencrantz & Guildenstern Affair

- XOR desired message with plaintext message.
- XOR the result with the ciphertext.
- Decryption is now the desired message.

Plaintext

| From: King Claud |
|------------------|
| ius To: The King |
| of England Plea  |
| se help me kill  |
| my nephew Hamlet |
| . Please send me |
| evidence with my |
| loyal chattel:   |
| my men Rosencra  |
| ntz & Guildenste |
| rn.              |

# Stream Ciphers: The Rosencrantz & Guildenstern Affair

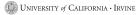
- XOR desired message with plaintext message.
- XOR the result with the ciphertext.
- Decryption is now the desired message.

| Plaintext        |  |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|--|
| From: King Claud |  |  |  |  |  |  |  |  |
| ius To: The King |  |  |  |  |  |  |  |  |
| of England Plea  |  |  |  |  |  |  |  |  |
| se help me kill  |  |  |  |  |  |  |  |  |
| my nephew Hamlet |  |  |  |  |  |  |  |  |
| . Please send me |  |  |  |  |  |  |  |  |
| evidence with my |  |  |  |  |  |  |  |  |
| loyal chattel:   |  |  |  |  |  |  |  |  |
| my men Rosencra  |  |  |  |  |  |  |  |  |
| ntz & Guildenste |  |  |  |  |  |  |  |  |
| rn.              |  |  |  |  |  |  |  |  |

|        | Decrypted Plaintext |
|--------|---------------------|
|        | From: King Claud    |
|        | ius To: The King    |
|        | of England I am     |
|        | responsible for     |
| :<br>→ | killing my broth    |
| *      | er and taking his   |
|        | wife. Hamlet is     |
|        | a swell guy. Giv    |
|        | e him an army to    |
|        | depose me. Toodl    |
|        | es. – Claudius      |
|        |                     |



## Subsection 3

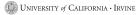

Data Integrity Modes

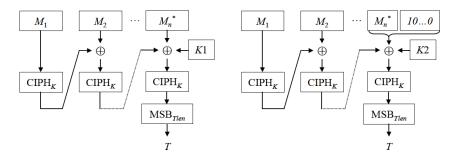


- ► An integrity mode, based on the CBC encryption mode.
- Set the IV to all 0s.
- Encrypt the data to be protected, and discard all ciphertext other than the last block.
- Optionally truncate this block of ciphertext.
- Send the data (possibly separately encrypted) and the CBC-MAC.

- If the plaintext to be authenticated is not block aligned, the last block must be padded.
- There is message ambiguity unless this padding is unambiguous.
- CBC-MAC keys should be different than encryption keys (particularly when used for CBC encrypt mode!)
- Security in the case of fixed length messages, or messages that include the message length in the first block, is excellent.
- Other uses (no length specified, or the length in the last block) suffer from extension attacks.

- Some naïve padding schemes can lead to message ambiguity.
  - The MAC of a message that was padded and a message whose end happens to resemble padding should not be the same.
  - Simply appending all 0s or all 1s is ambiguous. Where does the message end?
  - One common system is appending a binary 1 followed by as many 0s as necessary
- For CBC-MAC, to prevent message ambiguity, one must do at least one of the following:
  - Force all messages to be same fixed length.
  - Prepend the message length (and reject messages of the incorrect length).
  - Always unambiguously pad, even for messages that are block aligned (n.b. block aligned messages have a full block of padding added).





- The attacker can query a CBC-MAC oracle which operates using key k.
- The attacker requests the CBC-MAC of a one block message, m, from the oracle and obtains  $t_1$ .
- The attacker requests the CBC-MAC of the message  $t_1$  from the oracle, obtaining  $t_2$ .
- The attacker then knows the CBC-MAC of the two block message (m||0), namely t<sub>2</sub> (where || denotes string concatenation.)

- The attacker requests the CBC-MAC of the messages m and m', obtaining t and t', respectively.
- Denote the blocks making up m' as  $m' = m'_1 || \cdots || m'_n$ .
- ► The attacker then knows the MAC for a derived message,  $m||(m'_1 \oplus t)||m'_2||\cdots||m'_n$ , namely t'.

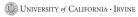
- As a general principle of cryptographic hygiene, keys should be used for only a single type of use:
  - A single mode of use
  - A single class of data (e.g., keys used to protect key management data should be different than keys used to protect user data.)
- Using the same key for both CBC-MAC and CBC encryption is useless.
  - So long as the attacker does not modify the final block of ciphertext, the CBC-MAC of the decrypted message will remain constant.

- A modern integrity mode, based on Phillip Rogaway's OMAC1
- Does not suffer from extension attacks
- Does not require encoding the length in the data, or a fixed data length.
- Pads partial last blocks unambiguously
- Uses one of two different subkeys, K1 and K2, for the final block, depending on the length of the last block.
  - Subkeys are derived by encrypting a block of 0s under K (+ some other processing).
- Allows truncating the resulting MAC output to 64 bits or longer.





Source: NIST SP800-38B


## Subsection 4

## Combined Confidentiality / Integrity Modes



## Provides data integrity (via CBC-MAC)

- CBC-MAC is applied to the plaintext data.
- Data length is prepended to data stream.
- There is a provision for some data to be authenticated but not encrypted.
- Provides confidentiality (via CTR mode)
  - MAC is encrypted



## Subsection 5

## **Block Cipher Modes of Operation Conclusion**

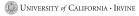


# What Did You Learn in School Today?

- Even idealized block ciphers are not magical.
- Some cipher modes are brittle.
- Most block cipher modes allow the attacker to make some targeted changes to the decrypted plaintext.
- Stream-cipher-like modes allow the attacker to make any desired changes to the decrypted plaintext.
- Detection of noise or attacker-induced corruption should not be dependent on message structure.
- Any confidentiality mode should be used in conjunction with some reasonable data integrity scheme.
- ► There are some modes that provide data integrity/authenticity.
- There are some modes that provide both confidentiality and data integrity/authenticity.

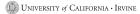
#### 1 Introduction

2 Block Cipher Modes of Operation


#### 3 Block Cipher Construction

- DES
- AES
- DES/AES Conclusion




- Substitution
- Permutation
- Expansion
- Compression (de-expansion)
- "Math"
- Integration of Keying Material

One can (and should) combine these approaches. This is called a product cipher.



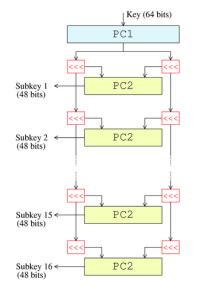
## Subsection 1

#### DES

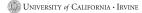


# **DES:** History

- ► IBM designed several variants of a cipher called Lucifer.
- One of these variants (Feistel network, 64 bit block size, 64 bit key) was submitted to the National Bureau of Standards (NBS).
- The NSA worked with IBM to tune the algorithm:
  - 1. Reduced the key size to 56 bits.
  - 2. Changed the S-Boxes.

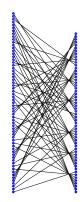

- DES was adopted in by the NBS in FIPS 46 in 1977, and then renewed as a standard in 1983, 1988, 1993, and 1999. FIPS 46-3 was withdrawn in 2005.
- The NSA changes were controversial, and many suspected that the NSA weakened the design.
- This induced (or was coincident with) the rise of an academic cryptologic research community.
  Output
  Output

# **DES:** History


- ► IBM designed several variants of a cipher called Lucifer.
- One of these variants (Feistel network, 64 bit block size, 64 bit key) was submitted to the National Bureau of Standards (NBS).
- The NSA worked with IBM to tune the algorithm:
  - 1. Reduced the key size to 56 bits.
  - 2. Changed the S-Boxes.
  - 3. Don Coppersmith revealed that IBM developed the S-Boxes (and knew about differential cryptanalysis).
- DES was adopted in by the NBS in FIPS 46 in 1977, and then renewed as a standard in 1983, 1988, 1993, and 1999. FIPS 46-3 was withdrawn in 2005.
- The NSA changes were controversial, and many suspected that the NSA weakened the design.
- This induced (or was coincident with) the rise of an academic cryptologic research community.
  Output
  Output

- 64 bit block size.
- 56 bit key (in a 64 bit block; LSB of each byte is optionally a parity bit to force odd parity).
- Cipher consists of a few distinct components:
  - Key Scheduler (establishes encrypt or decrypt)
  - The Initial Permutation (and its corresponding inverse, the Final Permutation)
  - Feistel network (16 rounds).

## **DES:** Key Scheduler




Source: Matt Crypto via: Wikipedia



## DES: PC1

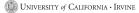
|    |    |    | $C_0$          |    |    |    |
|----|----|----|----------------|----|----|----|
| 57 | 49 | 41 | 33             | 25 | 17 | 9  |
| 1  | 58 | 50 | 42             | 34 | 26 | 18 |
| 10 | 2  | 59 | 51             | 43 | 35 | 27 |
| 19 | 11 | 3  | 60             | 52 | 44 | 36 |
|    |    |    | D <sub>0</sub> |    |    |    |
| 63 | 55 | 47 | 39             | 31 | 23 | 15 |
| 7  | 62 | 54 | 46             | 38 | 30 | 22 |
| 14 | 6  | 61 | 53             | 45 | 37 | 29 |
| 21 | 13 | 5  | 28             | 20 | 12 | 4  |



Source: SebDE via: Wikipedia

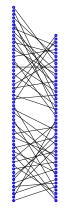
- Strip away the parity bits.
- No repeated or dropped key bits.
- ► Reorder key.
- Split the key into two 28 bit blocks, C<sub>0</sub> and D<sub>0</sub>.

UNIVERSITY of CALIFORNIA • IRVINE


"<<<"

• 
$$C_i = C_{i-1} < < s_i, D_i = D_{i-1} < < s_i$$

Circular shift left.


Number of shifts depends on the round index:

|    | Round ( <i>i</i> ) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|----|--------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|    | 1                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| Si | 1                  | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2  | 2  | 2  | 2  | 2  | 2  | 1  |



## DES: PC2

| 14 | 17 | 11 | 24 | 1  | 5  |
|----|----|----|----|----|----|
| 3  | 28 | 15 | 6  | 21 | 10 |
| 23 | 19 | 12 | 4  | 26 | 8  |
| 16 | 7  | 27 | 20 | 13 | 2  |
| 41 | 52 | 31 | 37 | 47 | 55 |
| 30 | 40 | 51 | 45 | 33 | 48 |
| 44 | 49 | 39 | 56 | 34 | 53 |
| 46 | 42 | 50 | 36 | 29 | 32 |



Source: SebDE via: Wikipedia

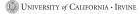
- Select 48 bits.
- Drop bits 9, 18, 22, 25, 35, 38, 43, 54.
- Reorder key.

UNIVERSITY of CALIFORNIA • IRVINE

- Outputs subkeys  $K_1, \ldots, K_{16}$ .
- Every bit of the key is in roughly 14 of the 16 subkeys.
- Ordering of subkeys establishes encrypt or decrypt mode of DES.



| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
|----|----|----|----|----|----|----|---|
| 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57 | 49 | 41 | 33 | 25 | 17 | 9  | 1 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |


- ► A perverse holdover from 1970s hardware design.
- Absolutely no security impact.
- Think: Eight 8-bit shift registers, fed by an 8-bit bus.



| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
|----|----|----|----|----|----|----|---|
| 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57 | 49 | 41 | 33 | 25 | 17 | 9  | 1 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |

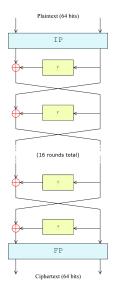
- ► A perverse holdover from 1970s hardware design.
- Absolutely no security impact.
- Think: Eight 8-bit shift registers, fed by an 8-bit bus.

▶ :-(



| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
|----|----|----|----|----|----|----|---|
| 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57 | 49 | 41 | 33 | 25 | 17 | 9  | 1 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |

- A perverse holdover from 1970s hardware design.
- Absolutely no security impact.
- Think: Eight 8-bit shift registers, fed by an 8-bit bus.
- ▶ :-(
- On the positive side, it's very slow in software...

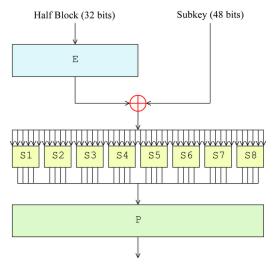

| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
|----|----|----|----|----|----|----|---|
| 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57 | 49 | 41 | 33 | 25 | 17 | 9  | 1 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |

- A perverse holdover from 1970s hardware design.
- Absolutely no security impact.
- Think: Eight 8-bit shift registers, fed by an 8-bit bus.
- ▶ :-(

:-(:-(

On the positive side, it's very slow in software...

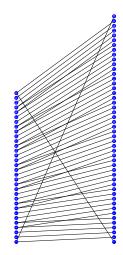
### **DES:** Feistel Network




Source: Matt Crypto via: Wikipedia



- ► 16 rounds total (16 invocations of the *f* function).
- Each of the subkeys from the key scheduler is used for one invocation of *f*.
- ► The current right half of the block is used as input for *f*.
- ► The output of *f* is XORed with the left half of the block.
- f need not be invertible.
- If *f* is linear, this network is fully linear (in  $\mathbb{F}_2$ ).
- Last step does not exchange (so encrypted sides are "swapped").
- Inverting (decrypting) only requires regenerating the same inputs for f (in reverse order). This is the encrypt process, but with subkeys reversed.

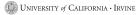

# DES: f Function



Source: Matt Crypto via: Wikipedia

## DES: *f* Function Expansion

| 32 | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 4  | 5  | 6  | 7  | 8  | 9  |
| 8  | 9  | 10 | 11 | 12 | 13 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 16 | 17 | 18 | 19 | 20 | 21 |
| 20 | 21 | 22 | 23 | 24 | 25 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 28 | 29 | 30 | 31 | 32 | 1  |




Source: SebDE via: Wikipedia

UNIVERSITY of CALIFORNIA • IRVINE

- Expand the input into eight 6-bit blocks.
- The middle 4 bits of each 6-bit block contain the complete message.
- Two adjacent blocks share two "message bits" (S<sub>1</sub> and S<sub>8</sub> are considered adjacent.)

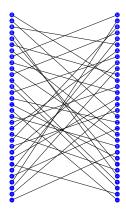
- ► The non-linear component of *f*.
- Substitution and compression.
  - Each S-Box takes in 6 bits and outputs 4 bits.
  - Each S-Box acts by applying one of 4 permutations on the middle 4 bits.
  - The particular permutation used is selected depending on the first and last input bit.
- Selection of the S-Box is of paramount importance for the security of DES.
- S-Box design was made to be maximally resistant to differential cryptanalysis (an attack publicly known in the late 80s).
- S-Box design was not made resistant to linear cryptanalysis (an attack publicly known in 1992).





|   | S1 |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |
|---|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|
|   | 0  | 1  | 2  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 0 | 14 | 4  | 13 | 1 | 2  | 15 | 11 | 8  | 3  | 10 | 6  | 12 | 5  | 9  | 0  | 7  |
| 1 | 0  | 15 | 7  | 4 | 14 | 2  | 13 | 1  | 10 | 6  | 12 | 11 | 9  | 5  | 3  | 8  |
| 2 | 4  | 1  | 14 | 8 | 13 | 6  | 2  | 11 | 15 | 12 | 9  | 7  | 3  | 10 | 5  | 0  |
| 3 | 15 | 12 | 8  | 2 | 4  | 9  | 1  | 7  | 5  | 11 | 3  | 14 | 10 | 0  | 6  | 13 |




|   | S1 |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |
|---|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|
|   | 0  | 1  | 2  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 0 | 14 | 4  | 13 | 1 | 2  | 15 | 11 | 8  | 3  | 10 | 6  | 12 | 5  | 9  | 0  | 7  |
| 1 | 0  | 15 | 7  | 4 | 14 | 2  | 13 | 1  | 10 | 6  | 12 | 11 | 9  | 5  | 3  | 8  |
| 2 | 4  | 1  | 14 | 8 | 13 | 6  | 2  | 11 | 15 | 12 | 9  | 7  | 3  | 10 | 5  | 0  |
| 3 | 15 | 12 | 8  | 2 | 4  | 9  | 1  | 7  | 5  | 11 | 3  | 14 | 10 | 0  | 6  | 13 |



- S-1 No output bit of an S-box should be too close to a linear function of the input bits.
- S-2 If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits.
- S-3 If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at least two bits.
- S-4 If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the two outputs must not be the same.
- S-5 For any nonzero 6-bit difference between inputs no more than eight of the 32 pairs of inputs exhibiting this difference may result in the same output difference.
- S-6 Similar to (S-5), but with stronger restrictions in the case that there are three "active" S-Boxes.

UNIVERSITY of CALIFORNIA • IRVINE

| 16 | 7  | 20 | 21 | 29 | 12 | 28 | 17                  |
|----|----|----|----|----|----|----|---------------------|
| 1  | 15 | 23 | 26 | 5  | 18 | 31 | 10                  |
| 2  | 8  | 24 | 14 | 32 | 27 | 3  | 9                   |
| 19 | 13 | 30 | 6  | 22 | 11 | 4  | 17<br>10<br>9<br>25 |



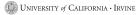
Source: SebDE via: Wikipedia



- P-1 The four output bits from each S-box at round *i* are distributed so that two of them affect "middle bits" of S-boxes at round i + 1 (recall: the two middle bits of input to an S-box are not shared).
- P-2 The four output bits from each S-box affect six different S-boxes; no two affect the same S-box.
- P-3 For two S-boxes j, k, if an output bit from  $S_j$  affects a middle bit of  $S_k$ , then an output bit from  $S_k$  cannot affect a middle bit of  $S_j$ .

• 
$$y = e_k(m) \Leftrightarrow \bar{y} = e_{\bar{k}}(\bar{m}).$$

• If  $K_i = K_j$  for all *i*, *j*, then *k* is a weak key.


- Encryption and decryption functions are the same.
- For each weak key, there are  $2^{32}$  fixed points of  $e_k$ .
- There are four weak keys.
- If  $e_k = d_{k'}$  then (k, k') are a semi-weak key pair.
  - There are six pairs of semi-weak keys.
  - For each of the semi-weak key pairs, there are  $2^{32}$  anti-fixed points  $e_k(x) = \bar{x}$ .

## DES: Theoretical Attack Landscape

- Brute force
  - 2<sup>55</sup> operations, with 1 known plaintext.
  - Negligible block storage requirement.
- Differential Cryptanalysis
  - Chosen plaintext attack.
  - 2<sup>47</sup> operations, 2<sup>47</sup> messages.
  - DES is optimized against Differential Cryptanalysis.
- Linear Cryptanalysis
  - Known plaintext attack.
  - Time / memory / success trade off
  - 2<sup>41</sup> operations, 2<sup>43</sup> messages (85% chance of success)
  - 2<sup>50</sup> operations, 2<sup>38</sup> messages (10% chance of success).
  - DES is not optimized against Linear Cryptanalysis.

Only brute force is considered a viable attack in most settings.

| Year      | Notes              | Cost                  | Runtime  |
|-----------|--------------------|-----------------------|----------|
| 1977      | Hellman design     | \$20M (est.)          | 1 day    |
| 1993      | Wiener design      | <b>\$1M</b> (est.)    | 7 hours  |
| 1997      | DESCHALL           | free (as in lemonade) | 96 days  |
| 1998      | EFF ("Deep Crack") | \$250k                | 56 hours |
| 2006-2008 | COPACOBANA(s)      | \$10k                 | 7 days   |

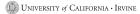


### Two structural problems with using DES:

- The block size is small.
- The key size is small.
- The problem with key size can be addressed by iterating DES.
- DES is not a group, so iterated DES may be useful.
- By iterating DES (allowing distinct keys), there are provably at least 10<sup>2499</sup> distinct permutations obtainable.

- Iterating increases the number of key bits, which sounds good.
- Double encryption is not helpful:
  - A meet in the middle attack gives only a doubling of computational security!
  - Encrypt known plaintext with all possible keys.
  - Decrypt associated ciphertext with all possible keys. Look for matches.
  - Information theory tells us that we need two distinct ciphertext/plaintext pairs to uniquely identify the keys.
  - This attack requires on average  $2^{56.6}$  operations with  $2^{56}$  storage.
- Triple encryption is more helpful than the above suggests.




$$\mathsf{Input} \to e_{k_1} \to d_{k_2} \to e_{k_3} \to \mathsf{Output}$$

- Traditionally, one uses Encrypt-Decrypt-Encrypt (EDE) for encryption.
- Decrypt-Encrypt-Decrypt (DED) is then used for decryption.
  - This is not interesting for DES!
  - The only difference between encrypt and decrypt mode is the order in which subkeys are used.
- There are three common modes of Triple-DES.
  - 3-Key Triple-DES (All keys are distinct)
  - 2-Key Triple-DES ( $k_1 = k_3$ ,  $k_2$  is distinct)
  - 1-Key Triple-DES ( $k_1 = k_2 = k_3$ )

- Three-key triple-DES can be attacked in 2<sup>112</sup> operations; this attack requires 2<sup>56</sup> blocks of storage.
- Two-key triple-DES has a time-storage tradeoff attack:
  - 2<sup>56</sup> operations, 2<sup>56</sup> storage required for attack, 2<sup>56</sup> chosen plaintexts.
  - 2<sup>80</sup> operations, 2<sup>40</sup> storage required for attack, 2<sup>40</sup> chosen plaintexts.
- One-key triple-DES is equivalent to single-DES.
- "Internal chaining" weakens the cipher a great deal, generally to the level of single-DES.

### Subsection 2

### AES



By 1997 it was clear that DES had some problems:

- The key length is too short for the modern computational environment.
- Triple-DES is very slow, particularly in software.
- The 64 bit block length leads to intrinsic limitations (birthday paradox problems).

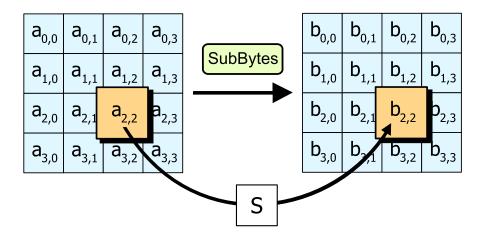
- September 12, 1997: NIST (née NBS) solicited submissions of ciphers to replace DES.
  - Required a block size of 128 bits.
  - Required a selectable key size of 128, 192, or 256 bits.
- 15 ciphers were submitted
- Conferences were scheduled to present cryptanalysis on the candidates.
  - AES1, August 1998
  - AES2, March 1999
  - AES3, April 2000.
- ► In August 1999, 5 finalists were selected by NIST.
- October 2, 2000 NIST announced that they had chosen Rijndael.

- 128 bit block size.
- 128, 192 or 256 bit key.
- > An invocation of the Cipher consists of a few distinct components:
  - 1. Key Scheduler
  - 2. AddRoundKey
  - 3.  $N_r 1$  Rounds
  - 4. FinalRound



- We are working in various finite fields.
- As a matter of practicality, we need to establish how to represent the field elements as binary strings.
- ► We'll express field elements as elements in  $\mathbb{F}_2[x]/\langle m(x) \rangle$  where m(x) is a degree 8 irreducible polynomial.
- Think: the set of polynomials of degree 7 or less, standard addition, reduce multiplication by the (irreducible) polynomial m(x).
- We view bytes as elements of  $\mathbb{F}_{2^8}$ . (MSB:  $b_7$ . LSB:  $b_0$ )

$$b_7b_6b_5b_4b_3b_2b_1b_0 \nleftrightarrow \sum_{i=0}^7 b_i x^i$$


For uniqueness of representation, we fix  $m(x) = x^8 + x^4 + x^3 + x + 1$ .

💭 UNIVERSITY of CALIFORNIA • IRVINE

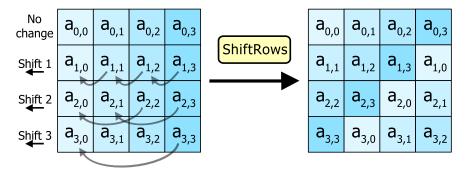
- 1. SubBytes
- 2. ShiftRows
- 3. MixColumns
- 4. AddRoundKey

The final round is the same, but without the MixColumns transform.





#### Source: Matt Crypto via: Wikipedia

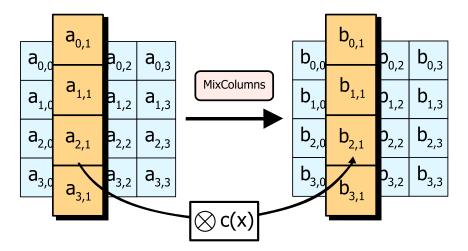

UNIVERSITY of CALIFORNIA • IRVINE

## **AES: SubBytes Transform Specification**

• The transform is  $S = f \circ q$  where: 1.  $q: \mathbb{F}_{28} \to \mathbb{F}_{28}$  $g(a) = \begin{cases} a^{-1} & a \neq 0 \\ 0 & a = 0 \end{cases}$ 2.  $f: \mathbb{F}_2^8 \to \mathbb{F}_2^8$  $f\begin{pmatrix} \begin{bmatrix} a_7\\a_6\\a_5\\a_4\\a_3\\a_2\\a_1\\a_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1\\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} a_7\\a_6\\a_5\\a_4\\a_3\\a_2\\a_1\\a_0 \end{bmatrix} \oplus \begin{bmatrix} 0\\1\\1\\0\\0\\0\\1\\1\\1 \end{bmatrix}$ 

UNIVERSITY of CALIFORNIA • IRVINE

- Every byte has exactly the same substitution.
- This substitution is not key dependent.
- The inverse operation is non-linear.
- ► The affine transformation was selected so that the algebraic expression of S in F<sub>2<sup>8</sup></sub> is complex.
- The affine transformation was selected so that there are no fixed or anti-fixed points.
- ▶ Both operations are clearly invertible;  $S^{-1} = g^{-1} \circ f^{-1}$ .



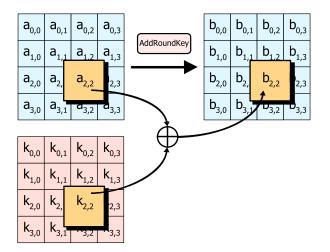

Source: Matt Crypto via: Wikipedia

UNIVERSITY of CALIFORNIA • IRVINE

- Cyclically shifts left the rows by different fixed amounts.
- Provides mixing of columns (diffusion).
- This is not key dependent.
- This helps protect against truncated differential and saturation attacks.
- The inverse operation just shifts the same amount in the opposite direction.

## **AES: MixColumns Transform**




#### Source: Matt Crypto via: Wikipedia

UNIVERSITY of CALIFORNIA · IRVINE

- Each column is viewed as the coefficients of a polynomial (of degree less than 4).
- ► The row number of the column is the power of *x*.
- ► This polynomial is multiplied by the fixed polynomial  $c(x) = 03x^3 + 01x^2 + 01x + 02$  and then reduced mod  $x^4 + 1$ .

- This is linear over  $\mathbb{F}_2$ .
- This contributes to diffusion.
- c(x) is coprime with  $x^4 + 1$ , so it has an inverse:  $0Bx^3 + 0Dx^2 + 09x + 0E$
- This is not key dependent.

## AES: AddRoundKey Transform



#### Source: Matt Crypto via: Wikipedia

UNIVERSITY of CALIFORNIA • IRVINE

- This combines the round key with the data block through XOR.
- This is key dependent.
- ► This transform is self-inverting.



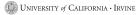
|        | k   | (ey siz | e   |
|--------|-----|---------|-----|
|        | 128 | 192     | 256 |
| Rounds | 10  | 12      | 14  |

- Full diffusion is provided after 2 rounds.
- Best known attacks at time of design stopped working starting at 6 rounds.
- Inserted "safety margin" of one full diffusion step at start and end of cipher, gives the 10 round value.
- More rounds are used for longer keys because the number of rounds makes various "short cut" attacks harder (and they should be as hard as guessing the longer key).
- Longer keys give an attacker more power for known- and related-key attacks.
  UNIVERSITY of CALIFORNIA · IRVINE

- Expands the key from  $N_k$  32-bit words to  $N_r$  + 1 round keys, each of which is 1 block (128 bits) long.
- First copies the provided key into the expanded key array.
- For later words, the *i*th word is the word one key length prior (the  $(i N_k)$ th word) XORed with:
  - For words that are at a multiple of  $N_k$ , a processed version of the (i 1)th word:
    - 1. Circularly rotated left one byte.
    - 2. *S* is applied to all bytes in the word.
    - 3. The first byte of the word is XORed with  $(02)^{i/N_k-1}$ .
  - When  $N_k = 8$ , if  $i \equiv 4 \pmod{8}$ , the prior word after S has been applied to each byte.
  - Otherwise the prior word.

- AES (with 256 bit keys) is the only non-classified block cipher that is approved to protect Top Secret information.
- AES was designed to perform well against all known attacks at the time, and had a "safety margin" to help with unknown attacks.
- In 2009, a related key attack was found on the full 192 and 256 key length AES with work factor requiring 2<sup>119</sup> computations and plaintext / ciphertext pairs.
- In 2011, there was a full key recovery attack found which reduces security by at most 1.25 bits requiring 2<sup>80</sup> ciphertext / plaintext pairs.

### Subsection 3


**DES/AES** Conclusion



- DES has been attacked for nearly 40 years.
- Several serious attacks have been found, through they are largely impractical.
- > The most practical attack is simple brute force, which is practical.
- (Three-Key) Triple-DES addresses the brute force attack, but is very slow.
- Some birthday paradox related problems with the block size remain.

- AES has been attacked for 14 years.
- No serious attacks have been found, though there are hints that some serious reduction in strength may be possible.
- The most practical attack is simple brute force, which is not practical.
- Birthday attacks are largely addressed by the large 128-bit block size.

- The principal font is Evert Bloemsma's 2004 humanist san-serif font Legato. This font is designed to be exquisitely readable, and is a significant departure from the highly geometric forms that dominate most san-serif fonts. Legato was Evert Bloemsma's final font prior to his untimely death at the age of 46.
- Math symbols are typeset using the MathTime Professional II (MTPro2) fonts, a font package released in 2006 by the great mathematical expositor Michael Spivak.
- The URLs are typeset in Luc(as) de Groot's 2005 Consolas, a monospace font with excellent readability.

