The Dual Elliptic Curve Deterministic RBG
Background, Specification, Security and Notes

Joshua E. Hill

Department of Mathematics, University of California, Irvine

Math 235C Mathematical Cryptography
June 5, 2013

v1.1
Talk Outline

1. Introduction
2. Background
3. Security Goals of the Dual EC DRBG
4. The Dual EC DRBG Specification
5. Underlying Theoretical Basis of Security
6. Attacks, Findings and Notes
7. Conclusion
We’ll talk about Number Theoretic RBGs.

We’ll talk about the desired goals of any reasonable RBG.

We’ll provide a specification for the Dual Elliptic Curve Deterministic RBG.

We’ll discuss the relevant problems.

We’ll describe some attacks on this DRBG.
Introduction

Background

Security Goals of the Dual EC DRBG

The Dual EC DRBG Specification

Underlying Theoretical Basis of Security

Attacks, Findings and Notes

Conclusion
I mean, what’s the point?

- There are many quick, well-designed RBGs in the world.
- They are generally based on ad-hoc assumptions and their security is dependent on some underlying security primitive.
- We would ideally have some RBG that was as secure as some very difficult problem.
- The “I’d have bigger problems” design ideal.
- Such algorithms do exist!
A **hardcore bit** (also called “hardcore predicate”) is a single bit associated with a one way function. Guessing this bit with any significant advantage is equivalent to reversing the associated one-way function.
We have already discussed one such RBG whose security analysis uses this notion: The Blum-Blum-Shub RBG.

Definition
Seed the RBG with $2 < x_0 < n - 1$ such that $(x_0, n) = 1$. Future states are calculated as $x_j = x_{j-1}^2 \pmod{n}$. The jth output, r_j, is a hardcore bit, generally the parity of x_j.
So, “Presentation Accomplished”?

► One bit per modular squaring is not exactly quick…
► Security bounds are a killer…
 ■ 128 bit security requires a 3072 bit modulus.
 ■ 256 bit security requires a 15360 bit modulus.
► If the modulus is \(k \) bits long, these multiplications each take at least \(O(k \log k \log \log k) \).
So, “Presentation Accomplished”?

- One bit per modular squaring is not exactly quick...
- Security bounds are a killer...
 - 128 bit security requires a 3072 bit modulus.
 - 256 bit security requires a 15360 bit modulus.
- If the modulus is k bits long, these multiplications each take at least $O(k \log k \log \log k)$.
- ... per bit output...
A more closely related design to the deterministic RBG that we are looking at today is:

Definition

The **Blum-Micali Number Generator** is specified by a (large) prime p, a generator g of multiplicative order $p - 1$ and an initial value x_0. The jth value is then $x_j = g^{x_{j-1}} \pmod{p}$. The jth output bit, r_j, is 1 if $x_j < \frac{p-1}{2}$ and 0 otherwise.

- Surely no performance problem here!¹
- If the modulus is k bits long, modular exponentiation occurs in $O(k^2 \log k \log \log k)$.

¹This bullet point is intended as sarcasm.
A more closely related design to the deterministic RBG that we are looking at today is:

Definition

The **Blum-Micali Number Generator** is specified by a (large) prime p, a generator g of multiplicative order $p - 1$ and an initial value x_0. The jth value is then $x_j = g^{x_{j-1}} \pmod{p}$. The jth output bit, r_j, is 1 if $x_j < \frac{p-1}{2}$ and 0 otherwise.

- Surely no performance problem here!¹
- If the modulus is k bits long, modular exponentiation occurs in $O(k^2 \log k \log \log k)$.
- ... per bit output...

¹This bullet point is intended as sarcasm.
1 Introduction

2 Background

3 Security Goals of the Dual EC DRBG

4 The Dual EC DRBG Specification

5 Underlying Theoretical Basis of Security

6 Attacks, Findings and Notes

7 Conclusion
Cryptographic Random Bit Generator

Definition

A cryptographic random bit generator, with security bound L bits, produces sequences of random bits (R_1, R_2, \ldots, R_n) such that

1. The generator is unbiased: $\Pr(R_j = 0) = \frac{1}{2}$.

2. The bits are uncorrelated: $\Pr(R_j = 0 | R_1, R_2, \ldots, R_{j-1}) = \frac{1}{2}$.

3. Negligible advantage: An attacker can’t distinguish between a “true” random bit generator and the cryptographic random bit generator without performing at least 2^L operations.
Backtracking Resistance

Definition

Backtracking resistance is provided relative to time T if there is assurance that an adversary who has knowledge of the internal state of the DRBG at some time subsequent to time T would be unable to distinguish between observations of ideal random bitstrings and (previously unseen) bitstrings that were output by the DRBG prior to time T.

NIST SP 800-90A
Definition

Prediction resistance is provided relative to time T if there is assurance that an adversary who has knowledge of the internal state of the DRBG at some time prior to T would be unable to distinguish between observations of ideal random bitstrings and bitstrings output by the DRBG at or subsequent to time T.

NIST SP 800-90A

- Note that this requires reseeding for any deterministic design.
The random bit generator is said to have cycle resistance if there is a negligible probability that the generator enters a cycle when used as specified.

Here negligible probability means less than 2^{-40}.
Specifications of our Lives

1. Introduction
2. Background
3. Security Goals of the Dual EC DRBG
4. The Dual EC DRBG Specification
5. Underlying Theoretical Basis of Security
6. Attacks, Findings and Notes
7. Conclusion
Helper Functions

- $\varphi(\cdot)$ converts a field element to an integer in a canonical way.
- $x(\cdot)$ takes the x-coordinate in affine coordinates in the provided model for the EC.
- “Extract Bits” takes the rightmost (LSBs) of the value.
The Algorithm

NIST SP800-90A
Parameters

- The generator is intended to produce no more than 2^{32} blocks between reseeding events.
- P and Q are obviously very important to the security of this generator.
- Three curves (along with associated P and Q values) are provided.
- There is a procedure for generating your own values of P and Q.
When you ASSUME…

1. Introduction
2. Background
3. Security Goals of the Dual EC DRBG
4. The Dual EC DRBG Specification
5. Underlying Theoretical Basis of Security
6. Attacks, Findings and Notes
7. Conclusion
Definition

Given an elliptic curve E and basepoint P, an attacker cannot distinguish between (qP, rP, qrP) and (qP, rP, zP), where q, r, and z are random values.
Definition

Let R be a random point and b a random bitstring matching the length of the output of the truncation function, t. The problem of distinguishing between $t(\varphi(x(R)))$ and b is the **Truncated Point Problem**.

See [Brown, Gjøsteen 2007]
x-logarithm Problem

Definition

Let E be an elliptic curve over \mathbb{F}_q, $P \in E(\mathbb{F}_q)$. Let $Z \in E(\mathbb{F}_q)$ be chosen uniformly at random and d a random integer in the range $[0, n - 1]$. The x-logarithm problem is the problem of distinguishing between dP and $x(Z)P$.

See [Brown, Gjøsteen 2007]
No “There” There

1. Introduction

2. Background

3. Security Goals of the Dual EC DRBG

4. The Dual EC DRBG Specification

5. Underlying Theoretical Basis of Security

6. Attacks, Findings and Notes

7. Conclusion
Due to [Schoenmakers, Sidorenko 2006]

- If too few bits are truncated, the generator has a predictor.
- This is as a result of modular arithmetic mod a prime.
- For \(k \)-bit random integers in \([0, 2^k - 1]\), the \(l \)th bit is random.
- If we restrict to some other (non-power of two length) range, this is no longer true.
- Thus, there is a small bias associated with the high order bits.
- Solution: remove at least 17 bits.
Asymptotic estimates of the distribution of x-coordinates by Shparlinski suggest that too much truncation may make a predictor possible as well.
Due to [Brown, Gjøsteen 2007]

A set of elliptic curves over binary fields are specified by NIST.

B-409 and K-409 (both over $\mathbb{F}_{2^{409}}$) are such binary fields.

These fields have the property that the LSB of the x value is fixed, so should be discarded.
Due to [Shumow, Ferguson 2007]
NIST Prime curves have prime order.
Thus there is an integer \(e \) so that \(eQ = P \).
The Attack: An attacker knows \(e \) and the prior output \(R \), and the number of bits the system truncates, \(m \).

- The attacker iterates through all \(2^m \) possible values for \(x \), say \(x_1, \ldots, x_{2^m} \).
- If \(\hat{y}_j = x_j^3 + ax_j + b \mod p \) is a square, then \((x_j, \pm \sqrt{\hat{y}_j}) \) are points on our EC.
- The correct point, \(A \), must be in the resulting list.
- We have \(A = sQ \), so \(eA = s(eQ) = sP \), so \(\varphi(x(eA)) \) is then the next internal state!

This attack difficulty increases exponentially with the number of bits truncated.
Due to [Shumow, Ferguson 2007]

NIST Prime curves have prime order.

Thus there is an integer \(e \) so that \(eQ = P \).

The Attack: An attacker knows \(e \) and the prior output \(R \), and the number of bits the system truncates, \(m \).

- The attacker iterates through all \(2^m \) possible values for \(x \), say \(x_1, \ldots, x_{2^m} \).
- If \(\hat{y}_j = x_j^3 + ax_j + b \pmod{p} \) is a square, then \((x_j, \pm \sqrt{\hat{y}_j}) \) are points on our EC.
- The correct point, \(A \), must be in the resulting list.
- We have \(A = sQ \), so \(eA = s(eQ) = sP \), so \(\varphi(x(eA)) \) is then the next internal state!

This attack difficulty increases exponentially with the number of bits truncated.

So, that would be bad then.
“The Back Door”

- Due to [Shumow, Ferguson 2007]
- NIST Prime curves have prime order.
- Thus there is an integer e so that $eQ = P$.
- The Attack: An attacker knows e and the prior output R, and the number of bits the system truncates, m.
 - The attacker iterates through all 2^m possible values for x, say x_1, \ldots, x_{2^m}.
 - If $\hat{y}_j = x_j^3 + ax_j + b \pmod{p}$ is a square, then $(x_j, \pm \sqrt{\hat{y}_j})$ are points on our EC.
 - The correct point, A, must be in the resulting list.
 - We have $A = sQ$, so $eA = s(eQ) = sP$, so $\varphi(x(eA))$ is then the next internal state!
- This attack difficulty increases exponentially with the number of bits truncated.
- So, that would be bad then.
- Does the NSA know e for the provided curves?
This generator is orders of magnitude slower than any of the common (non-number theoretic) RBG designs.

It is considerably faster than any of the common number theoretic RBGs.

- EC security (exponential) vs non-EC security (often sub-exponential).
- Other EC generators output only a single bit per EC point scaling operation.
Section 7

Conclusion
Today’s Conclusion

- Reseed often.
- Generate your own P, Q.
- Truncate aggressively, but not *too* aggressively.
That’s All Folks!

Thank You!
Bibliography

The principal font is Evert Bloemsma’s 2004 humanist sans-serif font Legato. This font is designed to be exquisitely readable, and is a significant departure from the highly geometric forms that dominate most sans-serif fonts. Legato was Evert Bloemsma’s final font prior to his untimely death at the age of 46.

The URLs are typeset in Luc(as) de Groot’s 2005 Consolas, a monospace font with excellent readability.