JEnt v2.2.0 LFSR Conditioning

Joshua E. Hill, PhD (KeyPair Consulting) and Yvonne Cliff, PhD (Teron Labs)

CMUF EWG 20251209

Meta Summary

- This is a presentation of "JEnt v2.2.0 LFSR Conditioning Analysis" Technical Review Draft 9.
- This paper is joint work with Yvonne Cliff (Teron Labs).
- This paper is still in development, but the parts presented today seem stable.
 - We are still working toward an analysis approach using the Leftover Hash Lemma

Dramatis Personae

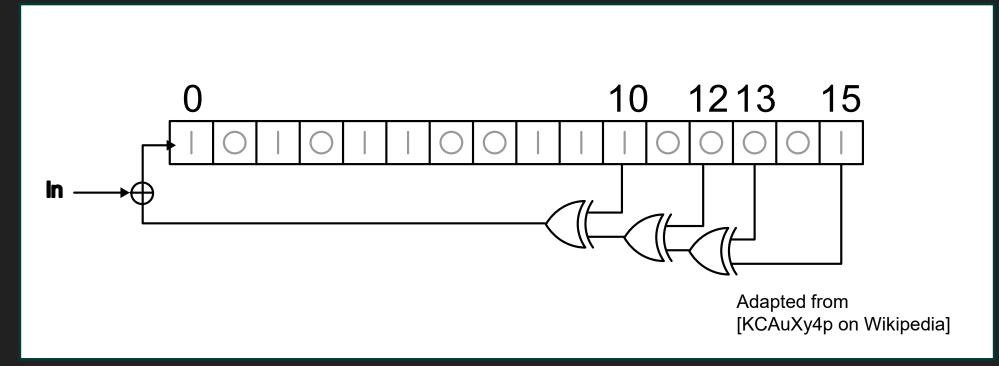
- JEnt v2.2.0 (released September 2019) has been widely integrated into many entropy sources.
 - e.g., #E8, #E19, #E20, #E37, #E47, #E48, #E50, #E54, #E59, #E60, #E61, #E62, #E90, #E99, #E117, #E151, #E174, #E175, #E226, #E235.
 - Many Linux kernel versions include a JEnt version that is based on JEnt v2.2.0.
- JEnt v2.2.0 uses an LFSR for conditioning.
- There is no public analysis of the LFSR conditioning to support ESV testing.
 - Testing requires mathematical evidence for various properties (see [SP 800-90B §3.2.3, Requirement 5] and [IG D.K, Resolution 5]; note that [NIST SHALL ID #52] is marked "Optional", but [NIST SHALL IDs #106-#107] are marked as "Required".)

In Summary, We...

- Present a linear model for this conditioning (Part 1)
 - Use this model to verify various characteristics of the conditioning.
 - Verify that this model is equivalent to the implemented conditioning.
- Present a heuristic analysis using this model obtain a conditioned output min entropy estimate. (Part 2)
- Provide the distribution of statistical entropy assessment results for most nonvetted conditioning functions. (Part 3.1)
- Describe changes to JEnt v2.2.0 that would allow for higher conditioned output block min entropy claims. (Part 3.2)

Part 0: LFSRs

- An LFSR is a shift register with linear (i.e., XOR-based) feedback.
- The JEnt v2.2.0 conditioning function uses a Fibonacci LFSR, e.g. something like:



- The LFSR is 64 bits wide and is used in multiplicative scrambler mode (i.e., takes an external input that is XORed into bit 0 of the LFSR)
- A single bit is fed in at a time until all 64 bits of the raw symbol are integrated into the LFSR.
- After sufficient (64 × osr) raw symbols are thus integrated, the entire internal state is output as conditioned data.
- The "taps" used in this LFSR are based on a primitive polynomial:

$$p(z) = z^{64} + z^{61} + z^{56} + z^{31} + z^{28} + z^{23} + 1$$

The LFSR has "good" structure, and loops through either 1 state (for the state value 0) or 2⁶⁴ – 1 states (for all other states).

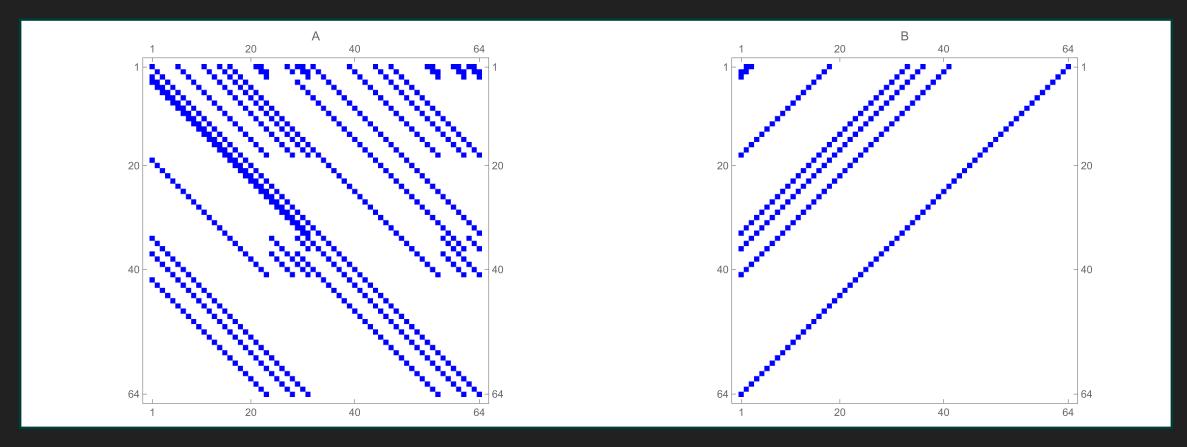
LFSRs are linear so the impact of the initial state and the input values can be broken apart by additivity:

$$f(s,x) = f(s,0) + f(0,x)$$

and each of these transforms can be represented using matrix multiplication:

$$f(s,x)=As+Bx.$$

Further, we can find the explicit values for the matrices A and B.



- So now we can implement JEnt v2.2.0 conditioning... really slowly?
- We can directly verify some LFSR characteristics (e.g., the order of the LFSR)
- We can also... <handwave>reason about the conditioning</handwave>!

We can make a recurrence relation:

$$o_{j}(s_{j}, x_{j}) = f(s_{j}, 0) + f(0, x_{j})$$

= $f(o_{j-1}(s_{j-1}, x_{j-1}), 0) + f(0, x_{j})$
= $Ao_{j-1}(s_{j-1}, x_{j-1}) + Bx_{j}$

Thus...

$$o_j(s_1, x_1, x_2, ... x_j) = A^j s_1 + \sum_{k=1}^j A^{j-k} B x_k$$

- This makes it clear what our matrices are accomplishing.
 - A performs 64 LFSR operations on the current internal state.
 - B deals with the loading of input data.
- We also see that every input is iteratively LFSR processed by a fixed function:

$$g_j(x) = A^j B x$$

• Both the matrices \pmb{A} and \pmb{B} are invertible (+ some linear algebra) so $\pmb{g}_j(\pmb{x})$ is a bijection.

Part 1: Record Scratch

$$\mathbf{g}_{j}(\mathbf{x}) = \mathbf{A}^{j}\mathbf{B} \mathbf{x}$$

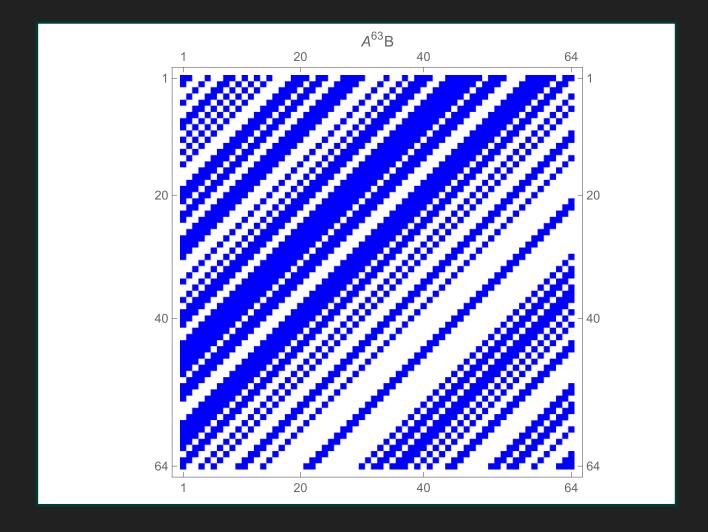
is a bijection, but repeated XOR is NOT bijective, so

$$o_j(s_1, x_1, x_2, ... x_j) = A^j s_1 + \sum_{k=1}^j g_{j-k}(x_k)$$

is not bijective.

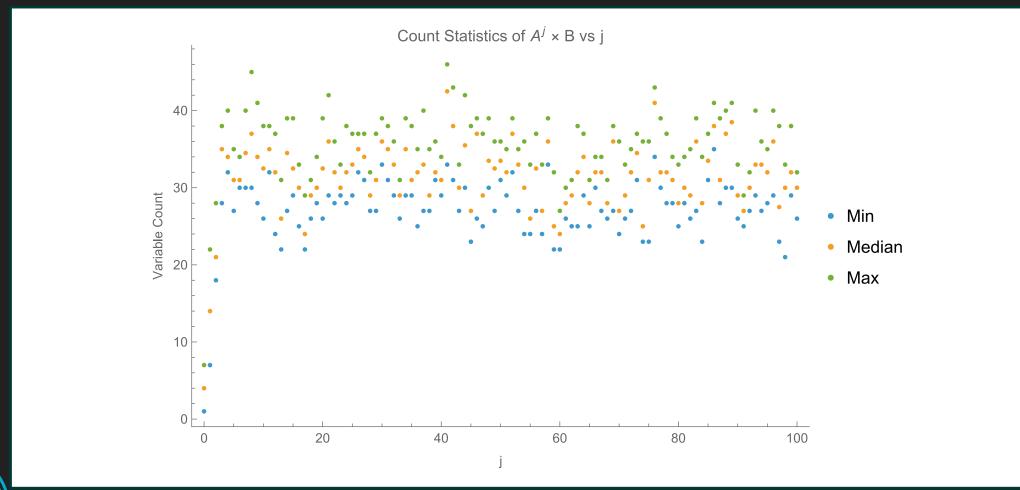
(This is good, as otherwise we could not accumulate entropy!)

• We use matrices of the form $A^{j}B$ so we are interested in their form, e.g.



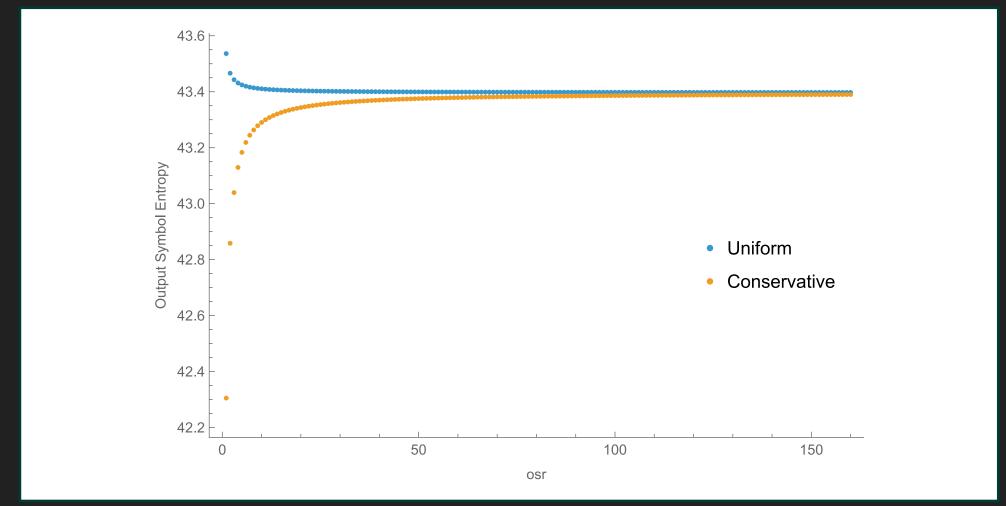
- For all the values we care about (to cover conditioning up to osr=200) (for this basis convention) these are Hankel matrices and symmetric.
- These properties are likely true more broadly...

- The function $g_j(x)$ is a bijection, so the entropy for each term in the sum is fixed.
- Iterative application of additional LFSR processing spreads out the impact of each input bit.



- By hypothesis, the min entropy for each raw symbol is $\geq \frac{1}{osr}$.
- After a few iterations (≥ 3), the entropy has been spread throughout the state.
- As such, we can model iteratively XORing w together bits, each with at least $\frac{1}{64 \times \text{OST}}$ bits of min entropy, and then scale to the full 64 bits.

$$h_{\text{heuristic}}^{\text{uniform}}(\text{osr}, w) = 64 \left(1 - \log_2 \left(\left(2^{1 - 1/(64 \times \text{osr})} - 1 \right)^w + 1 \right) \right)$$



The osr=1 case (discarding the entropy of the last three symbols) is the worst case:

$$h_{\text{heuristic}} \ge 42.3052$$

per 64-bit conditioned output block (assuming $h_{submitter} = \frac{1}{osr}$)

• Combining [SP 800-90B §3.1.5.2] and [IG D.K, Resolution 5], we get a formula like:

```
h_{\text{out}} = \min(\text{Output\_Entropy}(n_{\text{in}}, n_{\text{out}}, n_{\text{w}}, h_{\text{in}}), 0.999 \times n_{\text{out}}, h' \times n_{\text{out}}, h_{\text{heuristic}})
```

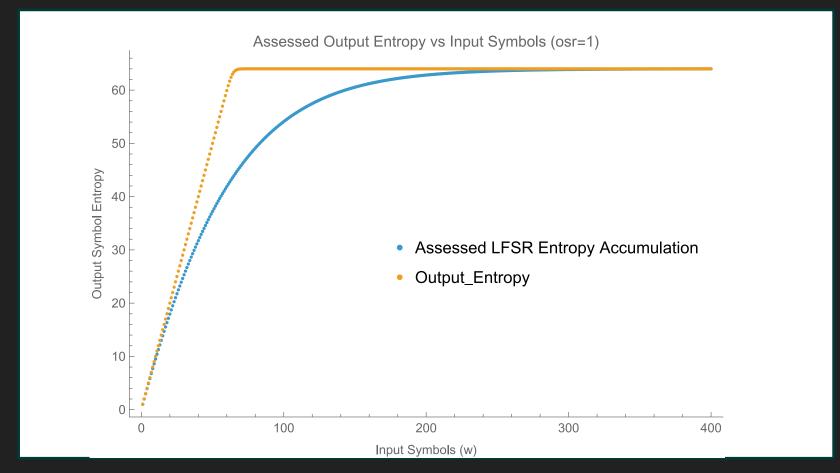
• The smallest of these terms dictates h_{out} .

- Some of these are not likely to be the minimum here.
 - $_{\circ}$ 0.999 × $n_{
 m Out}$ is essentially never the minimum of these expressions, as we necessarily have h'<0.999 for any reasonable size of conditioned sequential dataset.

Output_Entropy(·) Parameters:

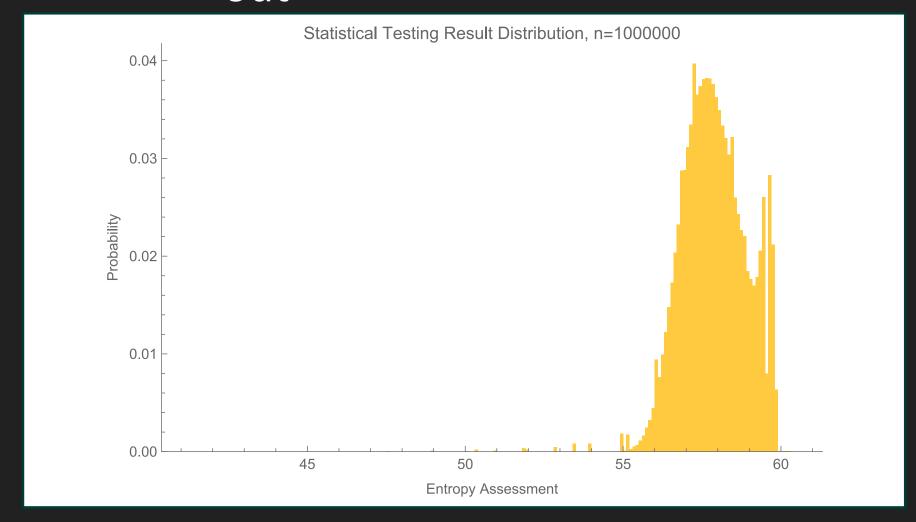
Parameter	Value
Symbol Width (n)	64
ⁿ out	64
nw (≤ n _{in})	64
$n_{in}(w \times n)$	$w \times 64$
Н	1/osr
$h_{in} = w \times H$	≥ w/osr

Output_Entropy(·) Results:



- The LFSR's output looks pseudorandom.
- Evaluation of pseudorandom data provides a practical "best case" for the $h' \times n_{\text{out}}$ term.
- This "best case" is essentially attained by any conditioner whose output is pseudorandom (which is most conditioners).
- The ESV program allows for submission of up to 1 million-byte samples (thus 8 million bits).
- With this size and type of data, this estimation approach yields a consistent distribution.

Part 3.1: $h' \times n_{\text{out}}$ for 64-Bit Blocks of Random Data



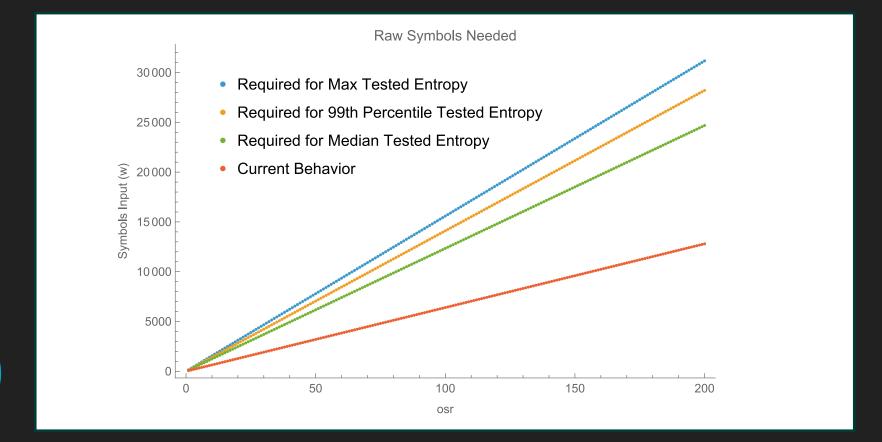
Part 3.1: $h' \times n_{\text{out}}$ for 64-Bit Blocks of Random Data

Percentile (%)	Value		
≈ 0 (Min)	40.8494		
50 (Median)	57.8352		
99	59.7484		
≈ 100 (Max)	60.8971		

Probability the Result is in the Bound (%)	Result Interval
95	[56.0599, 59.7484]
99	[54.9680, 59.8852]
99.9	[50.3425, 59.8852]

Part 3.2: Alternate values for w

• Now that we understand the distribution for $h' \times n_{\text{out}}$, we can set w to alter the chance that h_{out} is established by the heuristic estimate (which only happens when $h' \times n_{\text{out}} > h_{\text{heuristic}}$).



Approach	Chance of h heuristic Reducing h out	Scaling Factor (S)	$w = [S \times 64] \times osr$	Average h _{out}	Normalized Efficiency (Enormalized)
Original Behavior	≈ 100%	1	$w = 64 \times osr$	42.3053	1
$h_{ ext{heuristic}}$ is likely above $h' \times n_{ ext{out}}$	≤ 50%	1.96875	$w = 126 \times osr$	57.4610	0.689904
h heuristic is very likely above $h' \times n$	≤ 1%	2.25000	$w = 144 \times osr$	57.8775	0.608041
$n_{ m out}$ $h_{ m heuristic}$ is always above $h' \times n_{ m out}$	≈ 0%	2.48438	$w = 159 \times osr$	57.8780	0.550683

Part 3.2: Comments on Efficiency

- The best rate of entropy per unit time is attained by setting w as small as possible.
- Higher claims (min entropy per 64 bit block of conditioned data) are possible, but they decrease the amount of entropy per unit time.

Wait... What Were We Just Talking About?

We...

- Presented a linear model for this conditioning.
 - This was just a mathy way of conceptualizing the conditioning.
- Presented a heuristic analysis using this model
- Provided a broadly-applicable distribution of statistical entropy assessment results that applies to most non-vetted conditioning functions.
- Described changes to JEnt v2.2.0 that allow for higher conditioned output block min entropy claims (but at WHAT COST? AT WHAT COST?!?)

References

- IG] CMVP. *Implementation Guidance for FIPS 140-3 and the Cryptographic Module Validation Program.* NIST, September 2, 2025. https://csrc.nist.gov/csrc/media/Projects/cryptographic-module-validation-program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf.
- [NIST SHALL] NIST CAVP. 90B-Shall-Statements. NIST, August 9, 2021. https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/esv/90B%20Shall%20Statements.xlsx.
- [HC 2025] Joshua E. Hill and Yvonne Cliff. JEnt v2.2.0 LFSR Conditioning Analysis. TRD9.
- [SP 800-90B] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L. Baish and Mike Boyle. *NIST Special Publication 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation*. NIST, January 2018. https://doi.org/10.6028/NIST.SP.800-90B.

