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1 Overview

Recently, UL improved the SP 800-90B [2] code by implementing a Longest Common Prefix (LCP) array 
to compute the tuple counts for both the t-tuple and LRS estimates (see [1] for details). We give further 
improvements to the performance time by aggregating the tuple counts across multiple tuple sizes, resulting 
in only one traversal of the LCP array.

2 Count Aggregation

The main observation is that every time we see a non-zero value in the LCP array, we can efficiently keep 
track of all of the smaller tuple size counts. We define A as the array that keeps track of tuple repeat 
counts. Let L be an LCP array. Assuming we are currently at index i (1 ≤ i ≤ n) of the LCP array, A is 
updated as A[L[i]] = A[L[i]] + 1. Now, if L[i] < L[i − 1], the tuple counts for tuple sizes L[i] < t ≤ L[i − 1] 
are computed as follows:

for(t = L[i-1]; t > L[i]; t--){

A[t] += A[t+1]

A[t+1] = 0

/* t-tuple count is A[t]+1 */

}

Note that the t-tuple count is A[t] + 1 since the LCP array counts the number of tuple repeats, which is
one less than the number of occurrences.

To facilitate applying this algorithm, we define L[0] = L[n] = 0. This makes it so that the counts are
correctly updated for the boundary cases, since L[0] ≤ L[1] and L[n− 1] ≥ L[n]. Furthermore, let v be the
maximum value in L. The full algorithm to compute each of the tuple counts is then:

A[1] = A[2] = ... = A[v+1] = 0 /* v+1 avoids a buffer overflow for A[t+1] */

for(i = 1; i <= n; i++){

if(L[i] < L[i-1]){

for(t = L[i-1]; t > L[i]; t--){

A[t] += A[t+1]

A[t+1] = 0

/* do something with t-tuple count A[t]+1 ... */

}

if(L[i] > 0) A[L[i]] += A[L[i]+1] /* carry over count for t = L[i] */

A[L[i]+1] = 0

}

if(L[i] > 0) A[L[i]]++ /* update count for t = L[i] */

}
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As an example, we will apply this algorithm to the string “banana” in order to get the tuple counts.
We ignore the character ‘$’, which is typically used to denote the smallest character. The suffix and LCP
array for this string are as follows:

i suffix

0 a

1 ana

2 anana

3 banana

4 na

5 nana

=⇒

i LCP

0 0

1 1

2 3

3 0

4 0

5 2

6 0

Note that L[0] = L[6] = 0, where n = 6. Also, v = 3.

The following table depicts the steps of the algorithm and corresponding counts (A[t] + 1) for each
t-tuple that occurs more than once.

i t A A[t]+1 t-tuple

0 [0 0 0 0]

1 [1 0 0 0]

2 [1 0 1 0]

3 3 [1 0 1 0] 2 ana

3 2 [1 1 0 0] 2 an

3 1 [2 0 0 0] 3 a

4 [0 0 0 0]

5 [0 1 0 0]

6 2 [0 1 0 0] 2 na

6 1 [1 0 0 0] 2 n

3 t-Tuple Counts

Since the t-tuple estimate only requires finding the maximum t-tuple occurrence, we can ignore tuple
counts that are at most the current maximum count. To achieve this, we just need to keep track of the
indices (tuples) for the non-zero entries of A. In other words, we keep track of the indices L[i] of A for
which L[i] > 0. Letting I be the array that keeps track of these indices, and Q be the array that stores the
maximum tuple counts, the following algorithm will calculate Q:
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A[1] = A[2] = ... = A[v+1] = 0 /* v+1 not necessary here (for consistency) */

Q[1] = Q[2] = ... = Q[v] = 1

j = 0

for(i = 1; i <= n; i++){

c = 0

if(L[i] < L[i-1]){

t = L[i-1]

j--

while(t > L[i]){

if((j > 0) && (I[j] == t)){

/* update count for non-zero entry of A */

A[I[j]] += A[I[j+1]]

A[I[j+1]] = 0

j--

}

if(Q[t] >= A[I[j+1]]+1){

/*

* Q[t] is at least as large as current count,

* and since Q[t] <= Q[t-1] <= ... <= Q[1],

* there is no need to check zero entries of A

* until next non-zero entry

*/

if(j > 0)

/* skip to next non-zero entry of A */

t = I[j]

else

/*

* no more non-zero entries of A,

* so skip to L[i] (terminate while loop)

*/

t = L[i]

}

else

/* update Q[t] with new maximum count */

Q[t--] = A[I[j+1]]+1

}

c = A[I[j+1]] /* store carry over count */

A[I[j+1]] = 0

}

if(L[i] > 0){

if((j < 1) || (I[j] < L[i]))

/* insert index of next non-zero entry of A */

I[++j] = L[i]

A[I[j]] += c+1 /* update count for t = I[j] = L[i] */

}

}
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The following table shows the steps of the algorithm applied to the string “banana” resulting in Q for
the t-tuple estimate:

i t A I Q A[t]+1 t-tuple

0 [0 0 0 0] [0 0 0] [0 0 0]

1 [1 0 0 0] [1 0 0] [0 0 0]

2 [1 0 1 0] [1 3 0] [0 0 0]

3 3 [1 0 1 0] [1 3 0] [0 0 2] 2 ana

3 2 [1 1 0 0] [1 0 0] [0 2 2] 2 an

3 1 [2 0 0 0] [1 0 0] [3 2 2] 3 a

4 [0 0 0 0] [0 0 0] [3 2 2]

5 [0 1 0 0] [2 0 0] [3 2 2]

6 2 [0 1 0 0] [2 0 0] [3 2 2] 2 na

Notice that for i = 6, t = 1 does not need to be considered since Q[2] = A[2] + 1 and t = 2 is the only
non-zero entry for A at this point (implying that A[1] + 1 ≤ Q[2] ≤ Q[1]).

4 LRS Counts

Since the LRS estimate requires summing the count products for each of the tuple counts, we cannot use
the trick of only keeping track of the non-zero entries of A, as we did to compute Q for the t-tuple counts.
However, we can skip all of the tuple sizes that are less than u, where u is the smallest tuple size such
that Q[u] is less than the t-tuple estimate threshold. The following algorithm computes the sums of count
products S (numerator of PW in [2, Section 6.3.6]) for the LRS estimate:

A[1] = A[2] = ... = A[v+1] = 0 /* v+1 avoids a buffer overflow for A[t+1] */

S[1] = S[2] = ... = S[v] = 0

for(i = 1; i <= n; i++){

if((L[i-1] >= u) && (L[i] < L[i-1])){

b = L[i]

if(b < u) b = u-1

for(t = L[i-1]; t > b; t--){

A[t] += A[t+1]

A[t+1] = 0

S[t] += (A[t]+1) * A[t] /* update sum */

}

if(b >= u) A[b] += A[b+1] /* carry over count for t = L[i] */
A[b+1] = 0

}

if(L[i] >= u) A[L[i]]++ /* update count for t = L[i] */

}
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The following table gives the steps of the algorithm applied to the string “banana” yielding S for the
LRS estimate:

i t A A[t]+1 S t-tuple

0 [0 0 0 0] [0 0 0]

1 [1 0 0 0] [0 0 0]

2 [1 0 1 0] [0 0 0]

3 3 [1 0 1 0] 2 [0 0 2] ana

3 2 [1 1 0 0] 2 [0 2 2] an

3 1 [2 0 0 0] 3 [6 2 2] a

4 [0 0 0 0] [6 2 2]

5 [0 1 0 0] [6 2 2]

6 2 [0 1 0 0] 2 [6 4 2] na

6 1 [1 0 0 0] 2 [8 4 2] n
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A Counting Single Tuple Occurrences

Although the LCP array is adept for counting repeated occurrences of tuples, it can also be used to (indi-
rectly) count the number of tuples that occur once as follows. Let Y be the array that stores the number
of tuples that occur once for each tuple size. Set the initial value of Y[t] to Y[t] = n − t + 1. Then for
each count A[t] + 1, set Y[t] = Y[t]− (A[t] + 1). This will eliminate all of the counts for tuples that occur
multiple times, leaving the number of tuples that occur once.

An application of this is to compute collision entropy H2, since this requires computing all of the tuple
counts, not just for the repeated occurrences.
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