
NIST Special Publication 800-90B

Recommendation for the Entropy
Sources Used for Random Bit

Generation

Meltem Sönmez Turan
Elaine Barker

John Kelsey
Kerry A. McKay

Mary L. Baish
Mike Boyle

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-90B

C O M P U T E R S E C U R I T Y

jhill
Typewritten Text
JEH 20191219: General notes are present in PDF comments. The last few pages are new.

jhill
Typewritten Text
Our public comments are available here: http://bit.ly/UL90BCOM

NIST Special Publication 800-90B

Recommendation for the Entropy
Sources Used for Random Bit

Generation
Meltem Sönmez Turan

Elaine Barker
John Kelsey

Kerry McKay
Computer Security Division

Information Technology Laboratory

Mary L. Baish
Mike Boyle

National Security Agency
Fort Meade, MD

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-90B

January 2018

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-90B
Natl. Inst. Stand. Technol. Spec. Publ. 800-90B, 84 pages (January 2018)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-90B

Any mention of commercial products or reference to commercial organizations is for information only; it does not
imply recommendation or endorsement by the United States Government, nor does it imply that the products
mentioned are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by Federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, Federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: rbg_comments@nist.gov

 All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in
Federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities with
industry, government, and academic organizations.

Abstract

This Recommendation specifies the design principles and requirements for the entropy sources
used by Random Bit Generators, and the tests for the validation of entropy sources. These entropy
sources are intended to be combined with Deterministic Random Bit Generator mechanisms that
are specified in SP 800-90A to construct Random Bit Generators, as specified in SP 800-90C.

Keywords

Conditioning functions; entropy source; health testing; min-entropy; noise source; predictors;
random number generators

Acknowledgements

The authors of this Recommendation gratefully acknowledge and appreciate contributions by their
colleagues at NIST, Apostol Vassilev and Timothy A. Hall; and Aaron H. Kaufer and Darryl M.
Buller of the National Security Agency for assistance in the development of this Recommendation.
NIST also thanks the many contributions by the public and private sectors.

Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the
framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic
Module Validation Program (CMVP). The requirements of this Recommendation are indicated by
the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP validation
testing, and thus are the responsibility of entities using, implementing, installing or configuring
applications that incorporate this Recommendation.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Table of Contents
1 Introduction .. 1

1.1 Scope .. 1

1.2 Organization ... 2

1.3 Symbols .. 2

2 General Discussion .. 4

2.1 Min-Entropy .. 4

2.2 The Entropy Source Model ... 5

2.2.1 Noise Source .. 5

2.2.2 Conditioning Component .. 6

2.2.3 Health Tests ... 6

2.3 Conceptual Interfaces ... 6

2.3.1 GetEntropy: An Interface to the Entropy Source 6

2.3.2 GetNoise: An Interface to the Noise Source ... 7

2.3.3 HealthTest: An Interface to the Entropy Source 7

3 Entropy Source Validation .. 9

3.1 Validation Process .. 9

3.1.1 Data Collection ... 9

3.1.2 Determining the track: IID track vs. non-IID track 11

3.1.3 Initial Entropy Estimate ... 12

3.1.4 Restart Tests .. 12

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning
Component .. 14

3.1.6 Additional Noise Sources ... 17

3.2 Requirements for Validation Testing ... 18

3.2.1 Requirements on the Entropy Source... 18

3.2.2 Requirements on the Noise Source .. 18

3.2.3 Requirements on the Conditioning Component 19

3.2.4 Requirements on Data Collection ... 20

4 Health Tests .. 22

4.1 Health Test Overview .. 22

4.2 Types of Health Tests ... 22

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

4.3 Requirements for Health Tests ... 23

4.4 Approved Continuous Health Tests .. 25

4.4.1 Repetition Count Test ... 25

4.4.2 Adaptive Proportion Test .. 26

4.5 Developer-Defined Alternatives to the Continuous Health Tests 28

5 Testing the IID Assumption ... 29

5.1 Permutation Testing .. 29

5.1.1 Excursion Test Statistic .. 31

5.1.2 Number of Directional Runs ... 31

5.1.3 Length of Directional Runs ... 31

5.1.4 Number of Increases and Decreases ... 32

5.1.5 Number of Runs Based on the Median ... 32

5.1.6 Length of Runs Based on Median .. 33

5.1.7 Average Collision Test Statistic .. 33

5.1.8 Maximum Collision Test Statistic .. 34

5.1.9 Periodicity Test Statistic ... 34

5.1.10 Covariance Test Statistic .. 35

5.1.11 Compression Test Statistics ... 35

5.2 Additional Chi-square Statistical Tests .. 35

5.2.1 Testing Independence for Non-Binary Data 35

5.2.2 Testing Goodness-of-fit for Non-Binary Data 37

5.2.3 Testing Independence for Binary Data ... 37

5.2.4 Testing Goodness-of-fit for Binary Data ... 38

5.2.5 Length of the Longest Repeated Substring Test 39

6 Estimating Min-Entropy ... 40

6.1 IID Track: Entropy Estimation for IID Data .. 40

6.2 Non-IID Track: Entropy Estimation for Non-IID Data..................................... 40

6.3 Estimators ... 41

6.3.1 The Most Common Value Estimate .. 41

6.3.2 The Collision Estimate .. 42

6.3.3 The Markov Estimate .. 43

6.3.4 The Compression Estimate .. 45

6.3.5 t-Tuple Estimate ... 47

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

6.3.6 Longest Repeated Substring (LRS) Estimate 48

6.3.7 Multi Most Common in Window Prediction Estimate 49

6.3.8 The Lag Prediction Estimate .. 51

6.3.9 The MultiMMC Prediction Estimate .. 52

6.3.10 The LZ78Y Prediction Estimate .. 55

6.4 Reducing the Symbol Space ... 58

List of Appendices

 Acronyms .. 60

 Glossary .. 61

 References .. 67

 Min-Entropy and Optimum Guessing Attack Cost 69

 The Narrowest Internal Width .. 72

 CBC-MAC Specification .. 73

 Different Strategies for Entropy Estimation 74

G.1 Entropic Statistics ... 74

G.1.1 Approximation of 𝐅𝐅(𝟏𝟏/𝐳𝐳) ... 74

G.2 Predictors .. 75

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

List of Figures

Figure 1 Entropy Source Model ... 5

Figure 2 Entropy Estimation Strategy .. 10

Figure 3 Entropy of the Conditioning Component ... 15

Figure 4 Generic Structure for Permutation Testing .. 29

Figure 5 Pseudo-code of the Fisher-Yates Shuffle .. 30

List of Tables

Table 1 The narrowest internal width and output lengths of the vetted conditioning
functions. .. 16

Table 2 Example cutoff values of the Adaptive Proportion Test 27

Table 3 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 values for different r values when L=1 000 000. 76

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

1 Introduction

1.1 Scope

Cryptography and security applications make extensive use of random numbers and random bits.
However, the generation of random bits is problematic in many practical applications of
cryptography. The NIST Special Publication (SP) 800-90 series of Recommendations provides
guidance on the construction and validation of Random Bit Generators (RBGs) in the form of
Deterministic Random Bit Generators (DRBGs) (also known as pseudorandom number
generators) or Non-deterministic Random Bit Generators (NRBGs) that can be used for
cryptographic applications. This Recommendation specifies how to design and test entropy
sources that can be used by these RBGs. SP 800-90A addresses the construction of approved
DRBG mechanisms, while SP 800-90C addresses the construction of RBGs from the mechanisms
in SP 800-90A and the entropy sources in SP 800-90B. These Recommendations provide a basis
for validation by NIST's Cryptographic Algorithm Validation Program (CAVP) and Cryptographic
Module Validation Program (CMVP).

An entropy source that conforms to this Recommendation can be used by RBGs to produce a
sequence of random bits. The outputs of entropy sources should contain a sufficient amount of
randomness to provide security. This Recommendation describes the properties that an entropy
source must have to make it suitable for use by cryptographic random bit generators, as well as the
tests used to validate the quality of the entropy source.

The development of entropy sources that construct unpredictable outputs is difficult, and providing
guidance for their design and validation testing is even more so. The testing approach defined in
this Recommendation assumes that the developer understands the behavior of the source of
randomness within the entropy source and has made a good-faith effort to produce an entropy
source suitable for cryptographic applications (e.g., produces bitstrings that can provide entropy
at a rate that meets (or exceeds) a specified value). It is expected that, over time, improvements to
the guidance and testing will be made, based on experience in using and validating against this
Recommendation.

This Recommendation is intended for use by entropy source developers (the entity that designs
and builds the entropy source or a portion thereof), submitters1 (the entity that submits the entropy
source for validation testing), NVLAP-accredited laboratories that validate entropy sources and
any entity with an interest in having an entropy source validated.

This Recommendation was developed in concert with American National Standard (ANS) X9.82,
a multi-part standard on random number generation.

1 The submitter may or may not be a developer; if the submitter is not the developer then the submitter may need to acquire required
information from the developer before submission or during validation testing.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

1.2 Organization

Section 2 gives a general discussion on min-entropy, the entropy source model and the conceptual
interfaces. Section 3 explains the validation process and lists the requirements on the entropy
source, data collection, documentation, etc. Section 4 describes the health tests. Section 5 includes
various statistical tests to check whether or not the entropy source outputs are IID (independent
and identically distributed). Section 6 provides several methods to estimate the entropy of the noise
source. The appendices include a list of acronyms, a glossary, references, a discussion on min-
entropy and the optimum-guessing-attack cost, information about the narrowest internal width,
Cipher Block Chaining – Message Authentication Code (CBC-MAC) specification, and the
underlying information on different entropy estimation strategies used in this Recommendation.

1.3 Symbols

The following symbols and functions are used in this Recommendation.

A={x1,x2,…,xk}
The alphabet, i.e., the set of all possible symbols that a (digitized) noise
source produces.

H
The min-entropy of the samples from a (digitized) noise source or of the
output from an entropy source; the min-entropy assessment for a noise
source or entropy source.

HI Initial entropy estimate.

Horiginal Entropy estimate of the sequential dataset

Hsubmiter The entropy estimate provided by the submitter.

L The number of samples.

logb(x) The logarithm of x with respect to base b.

ln(x) The natural logarithm.

min(a, b) A function that returns the minimum of the two values a and b.

max(a, b) A function that returns the maximum of the two values a and b.

M[i][j] The jth sample from the ith restart of the noise source.

n The length of xi in bits.

nw Narrowest width of the conditioning component

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

k The number of possible symbols, i.e., the size of the alphabet.

α The probability of falsely rejecting the null hypothesis (type I error).

|a| A function that returns the absolute value of a.

pi The probability for an observation (or occurrence) of the symbol xi in A.

pmax
The probability of observing the most common symbol from a noise
source.

S=(s1,…,sL) A dataset that consists of an ordered collection of L samples, where si ϵ A.

xi A possible output from the (digitized) noise source.

[a, b] The interval of numbers between a and b, including a and b.

 x A function that returns the smallest integer greater than or equal to x; also
known as the ceiling function.

 x A function that returns the largest integer less than or equal to x; also
known as the floor function.

|| Concatenation.

⊕ Bit-wise exclusive-or operation.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

2 General Discussion

The three main components of a cryptographic RBG are a source of random bits (an entropy
source), an algorithm for accumulating and providing random bits to the consuming applications,
and a way to combine the first two components appropriately for cryptographic applications. This
Recommendation describes how to design and test entropy sources. SP 800-90A describes
deterministic algorithms that take an entropy input and use it to produce pseudorandom values. SP
800-90C provides the “glue” for putting the entropy source together with the algorithm to
implement an RBG.

Specifying an entropy source is a complicated matter. This is partly due to confusion in the
meaning of entropy, and partly due to the fact that, while other parts of an RBG design are strictly
algorithmic, entropy sources depend on physical processes that may vary from one instance of a
source to another. This section discusses, in detail, both the entropy source model and the meaning
of entropy.

2.1 Min-Entropy

The central mathematical concept underlying this Recommendation is entropy. Entropy is defined
relative to one’s knowledge of an experiment’s output prior to observation, and reflects the
uncertainty associated with predicting its value – the larger the amount of entropy, the greater the
uncertainty in predicting the value of an observation. There are many possible measures for
entropy; this Recommendation uses a very conservative measure known as min-entropy, which
measures the effectiveness of the strategy of guessing the most likely output of the entropy source.
(see Appendix D and [Cac97] for more information).

In cryptography, the unpredictability of secret values (such as cryptographic keys) is essential. The
probability that a secret is guessed correctly in the first trial is related to the min-entropy of the
distribution that the secret was generated from.

The min-entropy of an independent discrete random variable X that takes values from the set
A={x1,x2,…,xk} with probability Pr(X=xi) = pi for i =1,…,k is defined as

𝐻𝐻 = min
1≤𝑖𝑖≤𝑘𝑘

(−log2 𝑝𝑝𝑖𝑖),

= − log2 max
1≤𝑖𝑖≤𝑘𝑘

𝑝𝑝𝑖𝑖.

If X has min-entropy H, then the probability of observing any particular value for X is no greater
than 2 −H. The maximum possible value for the min-entropy of a random variable with k distinct
values is log2 k, which is attained when the random variable has a uniform probability distribution,
i.e., p1 = p2 =…= pk =1/k.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

2.2 The Entropy Source Model

This section describes the entropy source model in detail. Figure 1 illustrates the model that this
Recommendation uses to describe an entropy source and its components, which consist of a noise
source, an optional conditioning component and a health testing component.

Figure 1 Entropy Source Model

2.2.1 Noise Source

The noise source is the root of security for the entropy source and for the RBG as a whole. This is
the component that contains the non-deterministic, entropy-providing process that is ultimately
responsible for the uncertainty associated with the bitstrings output by the entropy source.

If the non-deterministic activity being sampled produces something other than binary data, the
sampling process includes a digitization process that converts the output samples to bits. The
output of the digitized noise source is called the raw data.

This Recommendation assumes that the sample values (i.e., the symbols) obtained from a noise
source consist of fixed-length bitstrings.

Noise sources can be divided into two categories: Physical noise sources use dedicated hardware
to generate randomness; whereas Non-physical noise sources use system data (such as output of
Application Programming Interface (API) functions, Random Access Memory (RAM) data or
system time) or human input (e.g., mouse movements) to generate randomness.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

If the noise source fails to generate random outputs, no other component in the RBG can
compensate for the lack of entropy; hence, no security guarantees can be made for the application
relying on the RBG.

2.2.2 Conditioning Component

The optional conditioning component is a deterministic function responsible for reducing bias
and/or increasing the entropy rate of the resulting output bits (if necessary to obtain a target value).
There are various methods for achieving this. The developer should consider how the conditioning
component to be used and how variations in the behavior of the noise source may affect the entropy
rate of the output. In choosing an approach to implement, the developer may either choose to
implement a cryptographic algorithm listed in Section 3.1.5.1.1 or use an alternative algorithm as
a conditioning component. The use of either of these approaches is permitted by this
Recommendation.

2.2.3 Health Tests

Health tests are an integral part of the entropy source design that are intended to ensure that the
noise source and the entire entropy source continue to operate as expected. When testing the
entropy source, the end goal is to obtain assurance that failures of the entropy source are caught
quickly and with a high probability. Another aspect of health testing strategy is determining the
likely failure modes for the entropy source and, in particular, for the noise source. Health tests are
expected to include tests that can detect these failure conditions.

The health tests can be separated into three categories: start-up tests, continuous tests (primarily
on the noise source), and on-demand tests (See Section 4 for more information).

2.3 Conceptual Interfaces

This section describes three conceptual interfaces that can be used to interact with the entropy
source: GetEntropy, GetNoise and HealthTest. However, it is anticipated that the actual
interfaces used may depend on the entropy source employed.

These interfaces can be used when constructing an RBG as specified in SP 800-90C.

2.3.1 GetEntropy: An Interface to the Entropy Source

The GetEntropy interface can be considered to be a command interface into the outer entropy
source box in Figure 1. This interface is meant to indicate the types of requests for services that an
entropy source may support.

A GetEntropy call could return a bitstring containing the requested amount of entropy, along
with an indication of the status of the request. Optionally, an assessment of the entropy can be
provided. Note that the length of the returned bitstring may be greater than the amount of entropy
requested.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

GetEntropy
Input:
bits_of_entropy: the requested amount of entropy
Output:
entropy_bitstring: The string that provides the requested entropy.
status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise.

2.3.2 GetNoise: An Interface to the Noise Source

The GetNoise interface can be considered to be a command interface into the noise source
component of an entropy source. This could be used to obtain raw, digitized outputs from the noise
source for use in validation testing or for external health (i.e., testing performed external to the
entropy source). While it is not required to be in this form, it is expected that an interface be
available that allows noise source data to be obtained without harm to the entropy source. This
interface is meant to provide test data to credit a noise source with an entropy estimate during
validation or for external health testing. It is permitted that such an interface be available only in
“test mode” and that it is disabled when the source is operational.

This interface is not intended to constrain real-world implementations, but to provide a consistent
notation to describe the data collection from noise sources.

A GetNoise call returns raw, digitized samples from the noise source, along with an indication of
the status of the request.

GetNoise
Input:
number_of_samples_requested: An integer value that indicates the requested number of samples
to be returned from the noise source.
Output:
noise_source_data: The sequence of samples from the noise source with a length of
number_of_samples_requested.
status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise.

2.3.3 HealthTest: An Interface to the Entropy Source

A HealthTest call is a request to the entropy source to conduct a test of its health. Note that it may
not be necessary to include a separate HealthTest interface if the execution of the tests can be
initiated in another manner that is acceptable to FIPS 140 [FIPS140] validation.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

HealthTest
Input:
type_of_test_requested: A bitstring that indicates the type or suite of tests to be performed (this
may vary from one entropy source to another).
Output:
status: A Boolean value that is TRUE if the entropy source passed the requested test, and is
FALSE otherwise.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

3 Entropy Source Validation

Entropy source validation is necessary in order to obtain assurance that all relevant requirements
of this Recommendation are met. This Recommendation provides requirements for validating an
entropy source at a stated entropy rate. Validation consists of testing by an NVLAP-accredited
laboratory against the requirements of SP 800-90B, followed by a review of the results by CAVP
and CMVP. Validation provides additional assurance that adequate entropy is provided by the
source and may be necessary to satisfy some legal restrictions, policies, and/or directives of various
organizations.

The validation of an entropy source presents many challenges. No other part of an RBG is so
dependent on the technological and environmental details of an implementation. At the same time,
the proper operation of the entropy source is essential to the security of an RBG. The developer
should make every effort to design an entropy source that can be shown to serve as a consistent
source of entropy, producing bitstrings that can provide entropy at a rate that meets (or exceeds) a
specified value. In order to design an entropy source that provides an adequate amount of entropy
per output bitstring, the developer must be able to accurately estimate the amount of entropy that
can be provided by sampling its (digitized) noise source. The developer must also understand the
behavior of the other components included in the entropy source, since the interactions between
the various components may affect any assessment of the entropy that can be provided by an
implementation of the design. For example, if it is known that the raw noise-source output is
biased, appropriate conditioning components can be included in the design to reduce the bias of
the entropy source output to a tolerable level before any bits are output from the entropy source.

3.1 Validation Process

An entropy source may be submitted to an accredited lab for validation testing by the developer or
any entity with an interest in having an entropy source validated. After the entropy source is
submitted for validation, the lab will examine all documentation and theoretical justifications
submitted. The lab will evaluate these claims, and may ask for more evidence or clarification.

The general flow of entropy source validation testing is summarized in Figure 2. The following
sections describe the details of the validation testing process.

3.1.1 Data Collection

The submitter provides the following inputs for entropy estimation, according to the requirements
presented in Section 3.2.4.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Estimate entropy - Non-IID
track (Section 6.2)

Validation fails. No
entropy estimate awarded.

Update entropy estimate
(Section 3.1.4)

Is conditioning used?

Update entropy estimate
(Section 3.1.5)

Estimate entropy - IID track
(Section 6.1)

Apply Restart Tests
(Section 3.1.4)

Pass restart tests?

Data collection
(Section 3.1.1)

 Determine the track
(Section 3.1.2)

Start validation

Validation at entropy
estimate.

Non-IID track

Yes

IID track

No

Yes

No

Figure 2 Entropy Estimation Strategy

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

1. A sequential dataset of at least 1 000 000 sample values obtained directly from the noise source
(i.e., raw data) shall be collected for validation 2. If the generation of 1 000 000 consecutive
samples is not possible, the concatenation of several smaller sets of consecutive samples
(generated using the same noise source) is allowed. Smaller sets shall contain at least 1000
samples. The concatenated dataset shall contain at least 1 000 000 samples.

2. If the entropy source includes a conditioning component that is not listed in Section 3.1.5.1.1,
a conditioned sequential dataset of at least 1 000 000 consecutive conditioning component
outputs shall be collected for validation. The output of the conditioning component shall be
concatenated in the order in which it was generated and treated as a binary string for testing
purposes. Note that the data collected from the noise source for validation may be used as input
to the conditioning component for the collection of conditioned output values.

3. For the restart tests (see Section 3.1.4), the entropy source must be restarted 1000 times; for
each restart, 1000 consecutive samples shall be collected directly from the noise source. The
restart data shall be extracted whenever the noise source is ready and able to provide data that
can be used for producing entropy source output. This data is stored in a 1000×1000 restart
matrix M, where M[i][j] represents the jth sample from the ith restart.

3.1.2 Determining the track: IID track vs. non-IID track

In this Recommendation, entropy estimation is done using two different tracks: an IID-track and a
non-IID track. The IID-track (see Section 6.1) is used for entropy sources that generate IID
(independent and identically distributed) samples, whereas the non-IID track (see Section 6.2) is
used for noise sources that do not generate IID samples.

The track selection is done based on the following rules. The IID track shall be used only when
all of the following conditions are satisfied:

1. The submitter makes an IID claim on the noise source, based on the submitter’s analysis
of the design. The submitter shall provide rationale for the IID claim.

2. The sequential dataset described in item 1 of Section 3.1.1 is tested using the statistical
tests described in Section 5 to verify the IID assumption, and the IID assumption is verified
(i.e., there is no evidence that the data is not IID).

3. The row and column datasets described in item 3 of Section 3.1.1 are tested using the
statistical tests described in Section 5 to verify the IID assumption, and the IID assumption
is verified.

2 Providing additional data beyond what is required will result in more accurate entropy estimates. Lack of sufficient data
may result in lower entropy estimates due to the necessity of mapping down the output values (see Section 6.4). It is
recommended that, if possible, more data than is required be collected for validation. However, it is assumed in subsequent
text that only the required data has been collected.

jhill
Sticky Note
The estimators produce a distribution of results for a given entropy source. It would be a good idea to run each estimator several times and take the median as the result.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

4. If a conditioning component that is not listed in Section 3.1.5.1.1 is used, the conditioned
sequential dataset (described in item 2 of Section 3.1.1) is tested using the statistical tests
described in Section 5 to verify the IID assumption, and the IID assumption is verified.

If any of these conditions are not met, the estimation process shall follow the non-IID track.

3.1.3 Initial Entropy Estimate

The submitter shall provide an entropy estimate for the noise source outputs, which is based on
the submitter’s analysis of the noise source (see Requirement 3 in Section 3.2.2). This estimate is
denoted as Hsubmitter.

After determining the entropy estimation track, a min-entropy estimate per sample, denoted as
Horiginal, for the sequential dataset is calculated using the methods described in Section 6.1 (for the
IID track) or Section 6.2 (for the non-IID track). If the alphabet size is greater than 256, it shall be
reduced to at most 256 symbols (see Section 6.4).

If the sequential dataset is not binary, an additional entropy estimation (per bit), denoted Hbitstring,
is estimated. First, the sequential dataset that contains L samples (each having n bits) is considered
as a bitstring of size nL. The bits after the first 1 000 000 bits may be ignored. Then, the estimation
is done based on the entropy estimation track, as specified in the previous paragraph, and Hbitstring
is calculated. Then, the entropy per sample is estimated to be n×Hbitstring.

The initial entropy estimate of the noise source is calculated as HI = min (Horiginal, n×Hbitstring,
Hsubmitter) for non-binary sources and as HI = min (Horiginal, Hsubmitter) for binary sources.

3.1.4 Restart Tests

The entropy estimate of a noise source, calculated from a single, long-output sequence, might
provide an overestimate if the noise source generates correlated sequences after restarts. Hence,
an attacker with access to multiple noise source output sequences after restarts may be able to
predict the next output sequence with much better success than the entropy estimate suggests.

The process of restarting a noise source may be different for different noise sources (e.g., powering
off, cooling off, delaying ten seconds before extracting output from the noise source, etc.). The
submitter shall define the restart process suitable for the submission. This process shall simulate
the restart process expected in real-world use (e.g., the outputs are not generated until after the
start-up tests are complete; see Section 4.2). All restarts are expected to be done in normal
operating conditions.

The restart tests described in this section re-evaluate the entropy estimate for the noise source using
different outputs from many restarts of the noise source. These tests are designed to ensure that:

- The noise source outputs generated after a restart are drawn from the same distribution as
every other output.

- The distribution of samples in a restart sequence is independent of its position in the restart
sequence.

jhill
Highlight

jhill
Highlight
H_{submitter} is incredibly important, as many sources do not assess conservatively when using only statistical assessment (e.g., in one particular RO implementation, only 30% of the observed standard deviation is expected to come from local Gaussian noise; the rest is basically predictable by a suitably informed attacker). This also provides the vendor with the ability to decrease the end assessed entropy (which is useful to increase the chance that the restart sanity test will pass, and to make the various health checks less likely to fail).

jhill
Sticky Note
This document does not specify how to accomplish this task, so this procedure is not completely specified. How are the symbols to be arranged, and how is each symbol to be encoded?

For example, if we just concatenate the symbols together, we still need to know how the symbols should be encoded: most significant bit to least significant bit (big endian), least significant bit to most significant bit (little endian), or some other encoding?

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

- The knowledge of other restart sequences does not offer additional advantage in predicting
the next restart sequence.

3.1.4.1 Constructing Restart Data

To construct restart data, the entropy source shall be restarted r = 1000 times; for each restart, c =
1000 consecutive samples shall be collected directly from the noise source. The collection of the
data shall be done as soon as the entropy source is ready to produce outputs for real-world use
(e.g., after start-up tests). Note that an entropy source, in its real-world use and during restart
testing, may inhibit outputs for a time immediately after restarting in order to allow any transient
weak behavior to pass. The output samples are stored in an r by c matrix M, where M[i][j]
represents the jth sample from the ith restart.

Two datasets are constructed using the matrix M:

- The row dataset is constructed by concatenating the rows of the matrix M, i.e., the row
dataset is M[1][1] ||…|| M[1][c] || M[2][1] ||…|| M[2][c] || … || M[r][1] ||…|| M[r][c].

- The column dataset is constructed by concatenating the columns of the matrix M, i.e., the
column dataset is M[1][1] ||…|| M[r][1] || M[1][2] ||…|| M[r][2] || …|| M[1][c] ||…|| M[r][c].

3.1.4.2 Validation Testing

The restart tests check the relations between noise source samples generated after restarting the
entropy source, and compare the results to the initial entropy estimate, HI (see Section 3.1.3).

First, the sanity check described in Section 3.1.4.3 is performed on the matrix M. If the test fails,
the validation fails and no entropy estimate is awarded.
If the noise source does not fail the sanity check, then the entropy estimation methods described
in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track) are performed on the row
and the column datasets, based on the track of the entropy source. Let Hr and Hc be the resulting
entropy estimates of the row and the column datasets, respectively. The entropy estimates from
the row and the column datasets are expected to be close to the initial entropy estimate HI. If the
minimum of Hr and Hc is less than half of HI, the validation fails, and no entropy estimate is
awarded. Otherwise, the entropy assessment of the noise source is taken as the minimum of the
row, the column and the initial estimates, i.e., min(Hr, Hc, HI).
If the noise source does not fail the restart tests, and the entropy source does not include a
conditioning component, the entropy source will be validated at H=min(Hr, Hc, HI). If the entropy
source includes a conditioning component, the entropy assessment of the entropy source is updated
as described in Section 3.1.5.

3.1.4.3 Sanity Check - Most Common Value in the Rows and Columns

This test checks the frequency of the most common value in the rows and the columns of the matrix
M. If this frequency is significantly greater than the expected value, given the initial entropy
estimate HI calculated in Section 3.1.3, the restart test fails. In this case, the validation fails no
entropy estimate is awarded.

jhill
Highlight
As M is described as matrix elsewhere, you may want to mention that the "column dataset" is just applying the rule for ordering the row dataset, but using the transpose of M.

jhill
Sticky Note
Note that this has a test construction issue. Use the simulation based approach described in our comments.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

This sanity check is based on a binomial test, where there are two possible outcomes for each trial:
the most frequent value or any other value is observed. The purpose of the test is to determine
whether the most frequent value appears more than would be expected, given the initial entropy
estimate, HI. The probability of type I error, denoted α, is set at 0.01 over the entire sanity check,
where each of the 2000 binomial experiments3 has type I error probability of 0.000 005.

Only the experiment yielding the highest count is tested. If that experiment passes the test, then
the other 1999 experiments will pass as well. If any of the 2000 experiments were to fail, one of
the failed experiments would be the experiment having the highest count. Therefore, it is sufficient
to test the experiment with the highest count.

Given the 1000 by 1000 restart matrix and the initial entropy estimate HI, the test is performed as
follows:

1. Let p = 2−𝐻𝐻𝐼𝐼. Let α be 0.000 005.
2. For each row (1≤ i ≤ 1000) of the matrix, count the number of occurrences of each sample

present in the row. Set XRi to the highest count value for row i. Let XR be the maximum count
value for all the rows, i.e., XR = max (XR1,…, XR1000).

3. For each column (1≤ i ≤ 1000) of the matrix, count the number of occurrences of each sample
present in the column. Set XCi to the highest count value for column i. Let XC be the maximum
count value for all the columns, i.e., XC = max (XC1,…, XC1000).

4. Let 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = max(𝑋𝑋𝑐𝑐,𝑋𝑋𝑅𝑅).

5. Calculate P(𝑋𝑋 ≥ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) = ∑ �1000𝑗𝑗 � 𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)1000−𝑗𝑗1000
𝑗𝑗=𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 . If Pr(𝑋𝑋 ≥ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) < 𝛼𝛼, the test

fails. Otherwise, the test passes.

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component

The optional conditioning component gets inputs from the noise source and generates the output
of the entropy source. The size of the input and the output of the conditioning component in bits,
denoted as nin and nout, respectively, shall be fixed and shall be specified by the submitter. Noise
source outputs are concatenated to construct nin-bit input to the conditioning function. The entropy
of the input, denoted hin, depends on the number of samples needed to construct the nin-bit input.
If w samples are needed, then hin is estimated to be w×h bits. The size of the conditioning
component input shall be a multiple of the size of the noise source output.

Since the conditioning component is deterministic, the entropy of the output is at most hin.
However, the conditioning component may reduce the entropy of the output. The entropy of the
output from the conditioning component is denoted as hout, i.e., hout bits of entropy are contained
within the nout-bit output. The entropy of the output also depends on the internals of the
conditioning components. In this Recommendation, the narrowest internal width within the

3 The experiments done for each row or column are considered to be independent.

jhill
Highlight
This is not what is being calculated here. This is the p-value for a single test; there are 2,000 such tests (which is why the test requires that you compare with alpha = 0.000005 rather than alpha = 0.01).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

conditioning component is denoted as nw. A discussion on the narrowest internal width is given
in Appendix E.

Figure 3 Entropy of the Conditioning Component

The optional conditioning component can be designed in various ways. Section 3.1.5.1.1 provides
a list of vetted cryptographic algorithms/functions for conditioning the noise source outputs.
Submitters are allowed to use other conditioning components. If a conditioning component from
Section 3.1.5.1.1 is used, the entropy estimation is performed as described in Section 3.1.5.1.2; if
a non-listed algorithm is used, the entropy estimation is performed as described in Section 3.1.5.2.

3.1.5.1 Using Vetted Conditioning Components

Both keyed and unkeyed algorithms have been vetted for conditioning. Section 3.1.5.1.1 provides
a list of vetted conditioning components. Section 3.1.5.1.2 discusses the method for determining
the entropy provided by a vetted conditioning component.

3.1.5.1.1 List of Vetted Conditioning Components

Three keyed algorithms have been vetted for a keyed conditioning component:

1. HMAC, as specified in FIPS 198, with any approved hash function specified in FIPS 180
or FIPS 202,

2. CMAC, as specified in SP 800-38B, with the AES block cipher (see FIPS 197), and
3. CBC-MAC, as specified in Appendix F, with the AES block cipher. This Recommendation

does not approve the use of CBC-MAC for purposes other than as a conditioning
component in an RBG.

Three unkeyed functions have been vetted for an unkeyed conditioning component:

1. Any approved hash function specified in FIPS 180 or FIPS 202,
2. Hash_df, as specified in SP 800-90A, using any approved hash function specified in FIPS

180 or FIPS 202, and
3. Block_Cipher_df, as specified in SP800-90A using the AES block cipher (see FIPS 197).

The narrowest internal width and the output length for the vetted conditioning functions are
provided in the following table.

Noise
Source

nout bits with
hout bits of entropy Conditioning

Component nw Output

nin bits with
hin bits of entropy

jhill
Highlight
Most uses of n_{in} should instead be the number of inputs from the raw entropy source multiplied by ceil(log_2(k)) (the minimal number of bits that could be used to encode each raw sample).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Table 1 The narrowest internal width and output lengths of the vetted conditioning
functions.

Conditioning Function Narrowest Internal Width
(nw)

Output Length
(nout)

HMAC hash-function output size hash-function output size

CMAC AES block size = 128 AES block size = 128

CBC-MAC AES block size = 128 AES block size = 128

Hash Function hash-function output size hash-function output size

Hash_df hash-function output size hash-function output size

Block_Cipher_df AES key size AES key size

For Hash_df and Block_cipher_df, the output length indicated in the table is used as the
no_of_bits_to_return input parameter for the invocation of Hash_df and Block_Cipher_df (see SP
800-90A).

3.1.5.1.2 Entropy Assessment using Vetted Conditioning Components

When using a conditioning component listed in Section 3.1.5.1.1 (given the assurance of correct
implementation by CAVP testing), the entropy of the output is estimated as

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = Output_Entropy(𝑛𝑛𝑖𝑖𝑖𝑖,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑛𝑛,ℎ𝑖𝑖𝑖𝑖)

where Output_Entropy(𝑛𝑛𝑖𝑖𝑖𝑖,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑛𝑛,ℎ𝑖𝑖𝑖𝑖) is described as follows4:

1. Let 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ = 2−ℎ𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 = (1−𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ)
2𝑛𝑛𝑖𝑖𝑖𝑖−1

 .
2. 𝑛𝑛 = min(𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛).
3. 𝜓𝜓 = 2𝑛𝑛𝑖𝑖𝑖𝑖−𝑛𝑛𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ
4. U = 2𝑛𝑛𝑖𝑖𝑖𝑖−𝑛𝑛 + �2 𝑛𝑛(2𝑛𝑛𝑖𝑖𝑖𝑖−𝑛𝑛) ln(2)
5. 𝜔𝜔 = 𝑈𝑈 ×𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙
6. Return − log2(max(𝜓𝜓,𝜔𝜔))

The entropy source will be assessed at the min-entropy per conditioned output, hout, computed
above. Vetted conditioning components are permitted to claim full entropy outputs.

4 The formula used to generate Output_Entropy() is adapted from the formula 𝑘𝑘𝛼𝛼 = 𝑚𝑚
𝑛𝑛

+ 𝛼𝛼�2𝑚𝑚
𝑛𝑛

ln 𝑛𝑛 provided in Theorem 1 of

[RaSt98], such that m is equal to 2𝑛𝑛𝑖𝑖𝑖𝑖, n is equal to 2𝑛𝑛 and 𝛼𝛼 is equal to 1.

jhill
Sticky Note
This assumes an underlying almost uniform distribution (as per Haggerty-Draper). The selected formula is supposed to apply when nlogn << m <= n polylog(n). Here, we have alpha=1, 2^n bins, and 2^{n_{in}} balls.

jhill
Sticky Note
This never allows h_out to equal n_out, so one can only get arbitrarily close. It's unclear what "full entropy" means presently.

jhill
Sticky Note
n_in should also be included, so n=min(n_out, nw, n_in). (This is consistent with the definition of the narrowest width in Appendix E).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Note that it is acceptable to truncate the outputs from a vetted conditioning component. If this is
done, the entropy estimate is reduced to a proportion of the output (e.g., if there are six bits of
entropy in an eight-bit output and the output is truncated to six bits, then the entropy is reduced to
3/4 x 6 = 4.5 bits).

When additional noise sources are available, the length of the input (𝑛𝑛𝑖𝑖𝑖𝑖) shall only include the
inputs from the primary noise source.

3.1.5.2 Using Non-vetted Conditioning Components

For non-vetted conditioning components, the entropy in the output depends on the entropy and
size of the input (hin and nin), the size of the output (nout), and the size of the narrowest internal
width (nw) and the entropy of the conditioned sequential dataset (as described in item 2 of Section
3.1.1), which shall be computed using the methods described in either Section 6.1 (for IID data)
or Section 6.2 (for non-IID data). Let the obtained entropy estimate per bit be h'.

The output of the conditioning component (nout) shall be treated as a binary string, for purposes of
the entropy estimation.

The entropy of the conditioned output is estimated as

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = min(Output_Entropy(𝑛𝑛𝑖𝑖𝑖𝑖,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛,ℎ𝑖𝑖𝑖𝑖), 0.999n𝑜𝑜𝑜𝑜𝑜𝑜,ℎ′×𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜).

The description of Output_Entropy is given in Section 3.1.5.1.2. To avoid approving an entropy
source having a non-vetted conditioning component with full entropy, 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 is multiplied by the
constant 0.999. The entropy source will be validated at the min-entropy per conditioned output,
hout, computed above.

Note that truncating subsequent to the use of a non-vetted conditioning component shall not be
performed before providing output from the entropy source.

3.1.6 Additional Noise Sources

In this Recommendation, it is assumed that the entropy sources have a unique primary noise source
that is responsible to generate randomness. It should be noted that multiple copies of the same
physical noise source are considered as a single noise source (e.g., a source with eight ring
oscillators, where the sampled bits are concatenated to get an eight-bit output, or where the samples
bits are XORed together).

In addition to the primary noise source outputs, outputs of other noise sources may be available to
the entropy source, and their outputs may be used to increase security. However, the joint entropy
of these outputs may be hard to estimate, especially when there are dependencies between the
sources (e.g., packet arrival times in a communication network and hard drive access times).

This Recommendation allows one to concatenate the outputs of the additional noise sources to the
primary noise source to generate input to the conditioning component. In such cases, vetted
conditioning components shall be used. No entropy is credited from the outputs of the additional
noise sources.

jhill
Highlight
This is a real problem for at least ring oscillators. Only raw RO outputs should be assessed (sans XOR!)

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

3.2 Requirements for Validation Testing

In this section, high-level requirements (on both submitters and testers) are presented for validation
testing.

3.2.1 Requirements on the Entropy Source

The intent of these requirements is to assist the developer in designing/implementing an entropy
source that can provide outputs with a consistent amount of entropy and to produce the required
documentation for entropy source validation.

1. The entire design of the entropy source shall be documented, including the interaction of
the components specified in Section 2.2. The documentation shall justify why the entropy
source can be relied upon to produce bits with entropy.

2. Documentation shall describe the operation of the entropy source, including how the
entropy source works, and how to obtain data from within the entropy source for validation
testing.

3. Documentation shall describe the range of operating conditions (e.g., temperature range,
voltages, system activity, etc.) under which the entropy source is claimed to operate
correctly. The entropy source outputs are expected to have similar entropy rates in this
specified range of operating conditions.

4. The entropy source shall have a well-defined (conceptual) security boundary. This security
boundary shall be documented; the documentation shall include a description of the
content of the security boundary.

5. When a conditioning component is not used, the output from the entropy source is the
output of the noise source, and no additional interface is required. In this case, the noise-
source output is available during both validation testing and normal operation.
When a conditioning component is included in the entropy source, the output from the
entropy source is the output of the conditioning component, and an additional interface is
required to access the noise-source output. In this case, the noise-source output shall be
accessible via the interface during validation testing, but the interface may be disabled
otherwise. The designer shall fully document the method used to get access to the raw
noise source samples. If the noise-source interface is not disabled during normal operation,
any noise-source output using this interface shall not be provided to the conditioning
component for processing and eventual output as normal entropy-source output.

6. The entropy source may restrict access to raw noise source samples to special
circumstances that are not available to users in the field, and the documentation shall
explain why this restriction is not expected to substantially alter the behavior of the entropy
source as tested during validation.

7. Documentation shall contain a description of the restarting process applied during the
restart tests.

3.2.2 Requirements on the Noise Source

The entropy source will have no more entropy than that provided by the noise source, and as such,
the noise source requires special attention during validation testing. This is partly due to the
fundamental importance of the noise source (if it does not do its job, the entropy source will not

jhill
Highlight
This is unrealistic; the only practical way of doing this would be to condition the data to the extent that it is expected to be full entropy at all conditions. This should allow a bound to be claimed and supported.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

provide the expected amount of security), and partly because the probabilistic nature of its behavior
requires more complicated testing.

The requirements for the noise source are as follows:

1. The operation of the noise source shall be documented; this documentation shall include a
description of how the noise source works, where the unpredictability comes from, and
rationale for why the noise source provides acceptable entropy output, and should reference
relevant, existing research and literature.

2. The behavior of the noise source shall be stationary (i.e., the probability distributions of the
noise source outputs do not change when shifted in time). Documentation shall include why it
is believed that the entropy rate does not change significantly during normal operation. This
can be in broad terms of where the unpredictability comes from and a rough description of the
behavior of the noise source (to show that it is reasonable to assume that the behavior is
stationary).

3. Documentation shall provide an explicit statement of the expected entropy provided by the
noise source outputs and provide a technical argument for why the noise source can support
that entropy rate. To support this, documentation may include a stochastic model of the noise
source outputs, and an entropy estimation based on this stochastic model may be included.

4. The noise source state shall be protected from adversarial knowledge or influence to the
greatest extent possible. The methods used for this shall be documented, including a
description of the (conceptual) security boundary’s role in protecting the noise source from
adversarial observation or influence.

5. Although the noise source is not required to produce unbiased and independent outputs, it shall
exhibit random behavior; i.e., the output shall not be definable by any known algorithmic rule.
Documentation shall indicate whether the noise source produces IID data or non-IID data. This
claim will be used in determining the test path followed during validation. If the submitter
makes an IID claim, documentation shall include rationale for the claim.

6. The noise source shall generate fixed-length bitstrings. A description of the output space of
the noise source shall be provided. Documentation shall specify the fixed symbol size (in bits)
and the list (or range) of all possible outputs from each noise source.

7. If additional noise source outputs to increase security are used, a document that describes the
additional noise sources shall be included.

3.2.3 Requirements on the Conditioning Component

The requirements for the conditioning component are as follows:

1. The submitter shall document which conditioning component is used and the details about its
implementation (e.g., the hash function and/or key size used). Documentation shall include the
input and the output sizes (nin and nout).

jhill
Highlight

jhill
Highlight
This just isn't true for any commercially available noise source that we've encountered (generally, behavior will vary with various environmental conditions or other entropy-relevant parameters). Instead, this should allow for establishing a lower bound for entropy production.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

2. If the entropy source uses a vetted conditioning component as listed in Section 3.1.5.1.1, the
implementation of the component shall be tested to obtain assurance of correctness before
subsequent testing of the entropy source. The submitter shall specify any keys used to test the
correctness of the conditioning component implementation during validation testing. If the
testing fails, validation of the entropy source fails. The submitter may retest with the corrected
implementation until the conditioning component passes the validation test.

3. If the conditioning component uses cryptographic keys, the keys may be (1) fixed to a pre-
determined value, (2) set using some additional input to the device, or (3) generated by using
the noise source outputs. The key shall be determined before any outputs are generated from
the conditioning component.

4. Any value which is used to determine the key shall not be used as any other input to the
conditioning component. The input entropy to the conditioning component (hin) shall not
include any entropy provided to the key of a keyed function.

5. For entropy sources containing a conditioning component that is not listed in Section 3.1.5.1.1,
a description of the conditioning component shall be provided. Documentation shall state the
narrowest internal width and the size of the output blocks from the conditioning component.
The submitter shall provide mathematical evidence that the component is suitable to be used
to condition the noise source output, and does not significantly reduce the entropy rate of the
entropy source output. The submitter shall also provide a justification about why the
conditioning component does not act poorly when the noise source data is not independent.

3.2.4 Requirements on Data Collection

The requirements on data collection are listed below:

1. The data collection for entropy estimation shall be performed in one of the three ways
described below:

• By the submitter with a witness from the testing lab, or

• By the testing lab itself, or

• Prepared by the submitter in advance of testing, along with the following documentation:
a specification of the data generation process, and a signed document that attests that the
specification was followed.

2. Data collected from the noise source for validation testing shall be raw output values.

3. The data collection process shall not require a detailed knowledge of the noise source or
intrusive actions that may alter the behavior of the noise source (e.g., drilling into the device).

4. Data shall be collected from the noise source and any conditioning component that is not listed
in Section 3.1.5.1.1 (if used) under normal operating conditions.

5. Data shall be collected from the entropy source under validation. Any relevant version of the
hardware or software updates shall be associated with the data.

6. Documentation of the data collection method shall be provided so that a lab or submitter can
perform (or replicate) the collection process at a later time, if necessary.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

7. Documentation explaining why the data collection method does not interfere with the noise
source shall be provided.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

4 Health Tests

Health tests are an important component of the entropy source, as they aim to detect deviations
from the intended behavior of the noise source as quickly as possible and with a high probability.
Noise sources can be fragile, and hence, can be affected by changes in the operating conditions of
the device, such as the temperature, humidity, or electric field, which might result in unexpected
behavior. The health tests take the entropy assessment as input5, and characterize the expected
behavior of the noise source based on this value. Requirements on the health tests are listed in
Section 4.3.

4.1 Health Test Overview

The health testing of a noise source is likely to be very technology-specific. Since, in most cases,
the noise source will not produce unbiased, independent binary data, traditional statistical
procedures (e.g., the randomness tests described in NIST SP 800-22) that test the hypothesis of
unbiased, independent bits will almost always fail, and thus are not useful for monitoring the noise
source. In general, tests on the noise source need to be tailored carefully, taking into account the
expected statistical behavior of the correctly operating noise source.

The health testing of noise sources will typically be designed to detect failures of the noise source,
based on the expected output during a failure, or to detect a deviation from the expected output
during the correct operation of the noise source. Health tests are expected to raise an alarm in three
cases:
1. When there is a significant decrease in the entropy of the outputs,
2. When noise source failures occur, or
3. When hardware fails, and implementations do not work correctly.

4.2 Types of Health Tests

Health tests are applied to the outputs of a noise source before any conditioning is done. (It is
permissible to also apply some health tests to conditioned outputs, but this is not required.)

Start-up health tests are designed to be performed after powering up, or rebooting, and before the
first use of the entropy source. They provide some assurance that the entropy source components
are working as expected before they are used during normal operating conditions, and that nothing
has failed since the last time that the start-up tests were run.6 The samples drawn from the noise
source during the startup tests shall not be available for normal operations until the tests are
completed; these samples may be discarded at any time, or may be used after the completion of
the tests if there are no errors.

5 The submitter may claim a low entropy estimate (as described in Section 3.1.3) to reduce the false positive rates.

6 The specific conditions in which the startup tests must be run for FIPS-validated cryptographic modules are determined by the
requirements of FIPS 140. This document imposes no additional requirements for the use of start-up health testing.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Continuous health tests are run indefinitely on the outputs of the noise source7 while the noise
source is operating. Continuous tests focus on the noise source behavior and aim to detect failures
as the noise source produces outputs. The purpose of continuous tests is to allow the entropy source
to detect many kinds of failures in its underlying noise source. These tests are run continuously on
all digitized samples obtained from the noise source, and so tests must have a very low probability
of raising a false alarm during the normal operation of the noise source. In many systems, a
reasonable false positive probability will make it extremely unlikely that a properly functioning
device will indicate a malfunction, even in a very long service life. Continuous tests are resource-
constrained − this limits their ability to detect noise source failures − so they are usually designed
so that only gross failures are likely to be detected.
Note that continuous health tests operate over a stream of values. These sample values may be
output from the entropy source as they are generated and (optionally) processed by a conditioning
component; there is no need to inhibit output from the noise source or entropy source while running
the test. It is important to understand that this may result in poor entropy source outputs for a time,
since the error is only signaled once significant evidence has been accumulated, and these values
may have already been output by the entropy source. As a result, it is important that the false
positive probability be set to an acceptable level. In the following discussion, all calculations
assume that a false positive probability of approximately one error in 220 samples generated by the
noise source is acceptable; however, the formulas given can be adapted for different false positive
probabilities selected by the submitter.
On-demand health tests can be called at any time. This Recommendation does not require
performing testing during operation. However, it does require that the entropy source be capable
of performing on-demand health tests of the noise source output. Note that resetting, rebooting, or
powering up are acceptable methods for initiating an on-demand test if the procedure results in the
immediate execution of the start-up tests. Samples collected from the noise source during on-
demand health tests shall not be available for use until the tests are completed, however these
samples may be discarded at any time, or may be used after the completion of the tests providing
that there are no errors.

4.3 Requirements for Health Tests

Health tests on the noise source are a required component of an entropy source. The health tests
shall include both continuous and start-up tests.
1. The continuous tests shall include either:

a. The approved continuous health tests, described in Section 4.4, or
b. Some developer-defined tests that meet the requirements for a substitution of those

approved tests, as described in Section 4.5. If developer-defined health tests are used in
place of any of the approved health tests, the tester shall verify that the implemented tests
detect the failure conditions detected by the approved continuous health tests, as described
in Section 4.4. The need to use the two approved continuous health tests can be avoided
by providing convincing evidence that the failure being considered will be reliably

7 Entropy sources may have a warm-up phase in which the outputs are inhibited for a time immediately after startup. Continuous
health testing is not required during the warm up phase.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

detected by the developer-defined continuous tests. This evidence may be a proof or the
results of statistical simulations.

c. The continuous tests may include additional tests defined by the developer.
2. When the health tests fail, the entropy source shall notify the consuming application (e.g., the

RBG) of the error condition. The developer may have defined different types of failures (e.g.,
intermittent and persistent), and the application is allowed to react differently to different types
of failures (e.g., by inhibiting output for a short time). The developer is allowed to define
different cutoff values to detect intermittent and persistent failures. If so, these values (with
corresponding false alarm probabilities) shall be specified in the submission documentation.
If the entropy source detects intermittent failures and allows the noise source to return to
normal functioning, the designer shall provide evidence that: a) The intermittent failures
handled in this way are indeed extremely likely to be intermittent failures; and b) the tests will
detect a permanent failure when one occurs, and will ultimately signal an error condition to
the consuming application and cease operation. In the case where a persistent failure is
detected, the entropy source shall not produce any outputs. The module may support being
reset or returned to operation by the consuming application or system. (An example of a
situation where this would make sense is a remote system whose cryptographic module cannot
be replaced quickly, but which must continue functioning.)

3. The optimal value for the false positive probability may depend on the rate that the entropy
source produces its outputs. For the approved continuous health tests, the false positive
probability8 is recommended to be between 2−20 and 2−40. Lower probability values are
acceptable. The submitter shall specify and document a false positive probability suitable for
their application.

4. The entropy source's startup tests shall run the continuous health tests over at least 1024
consecutive samples. The startup tests may include other tests defined by the developer. The
samples subjected to startup testing may be released for operational use after the startup tests
have been passed, or may be discarded at any time.

5. The entropy source shall support on-demand testing. The on-demand tests shall include at
least the same testing done by the start-up tests. The entropy source may support on-demand
testing by restarting the entropy source and rerunning the startup tests, or by rerunning the
startup tests without restarting the entropy source. The documentation shall specify the
approach used for on-demand testing. The on-demand tests may include other tests defined by
the developer, in addition to the testing done in the start-up tests.

6. Health tests shall be performed on the noise source samples before any conditioning is done.
Additional health tests may be performed on the outputs of the conditioning function.

7. The submitter shall provide documentation that specifies all entropy source health tests and
their rationale. The documentation shall include a description of the health tests, source code,
the rate and conditions under which each health test is performed (e.g., at power-up,

8 Having a high false positive probability and discarding the outputs when the test raises an alarm may result in a reduction in the
entropy of the outputs. For the recommended range, the loss can be considered negligible.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

continuously, or on-demand), and include rationale indicating why each test is believed to be
appropriate for detecting one or more failures in the noise source.

8. The submitter shall provide documentation of any known or suspected noise source failure
modes (e.g., the noise source starts producing periodic outputs like 101…01), and shall
include developer-defined continuous tests to detect those failures. These should include
potential failure modes that might be caused by an attack on the device.

9. Appropriate health tests that are tailored to the noise source should place special emphasis on
the detection of misbehavior near the boundary between the nominal operating environment
and abnormal conditions. This requires a thorough understanding of the operation of the noise
source.

4.4 Approved Continuous Health Tests

This recommendation provides two approved health tests: the Repetition Count test, and the
Adaptive Proportion test. If these two health tests are included among the continuous health tests
of the entropy source, no other tests are required. However, the developer is advised to include
additional continuous health tests tailored to the noise source.
Both tests are designed to require minimal resources, and to be computed on-the-fly while noise
source samples are being produced, possibly conditioned, and output by the entropy source.
Neither test needs to delay the availability of the noise source samples.

Like all statistical tests, both of these tests have a false positive probability – the probability that a
correctly functioning noise source will fail the test on a given output. In many applications, a
reasonable choice for the probability of type I error is α = 2−20; this value will be used in all the
calculations in the rest of this section. The developer of the entropy source shall determine a
reasonable probability of type I error (and corresponding cutoff values), based the details of the
entropy source and its consuming application.

4.4.1 Repetition Count Test

The goal of the Repetition Count Test is to quickly detect catastrophic failures that cause the noise
source to become "stuck" on a single output value for a long period of time. It can be considered
as an update of the "stuck test" that was previously required for random number generators within
FIPS-approved cryptographic modules. Note that this test is intended to detect a total failure of the
noise source.
Given the assessed min-entropy H of a noise source, the probability9 of that source generating n
identical samples consecutively is at most 2−H(n-1). The test declares an error if a sample is repeated
C or more times. The cutoff value C is determined by the acceptable false-positive probability α
and the entropy estimate H using the following formula

9 This probability can be obtained as follows. Let a random variable take possible values with probabilities pi, for i=1,..,k, where
p1≥p2≥…≥pk . Then, the probability of producing any C identical consecutive samples is ∑ piC. Since, ∑ piC is less than or equal to
p1. p1C−1+ p2.p1C−1+…+ pk.p1C−1= (p1+…+pk) p1C−1 = p1C-1 = 2−H(C−1).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

C = 1+ 



−

H
α log2 .

This value of C is the smallest integer satisfying the inequality α ≥2−H (C−1), which ensures that the
probability of obtaining a sequence of identical values from C consecutive noise source samples
is at most α. For example, for α = 2−20, an entropy source with H = 2.0 bits per sample would have
a repetition count test cutoff value of 1+20/2.0 = 11.
Let next() yield the next sample from the noise source. Given a continuous sequence of noise
source samples, and the cutoff value C, the repetition count test is performed as follows:

1. A=next()
2. B =1
3. X=next()
4. If (X = A),

 B=B+1
 If (B ≥ C), signal a failure.

else:
 A=X
 B=1

5. Repeat Step 3.

This test's cutoff value can be applied to any entropy estimate, H, including very small and very
large estimates. However, it is important to note that this test is not very powerful – it is able to
detect only catastrophic failures of a noise source. For example, a noise source evaluated at eight
bits of min-entropy per sample has a cutoff value of six repetitions to ensure a false-positive rate
of approximately once per 1012 samples generated. If that noise source somehow failed to the point
that each sample had a 1/16 probability of being the same as the previous sample, so that it was
providing only four bits of min-entropy per sample, it would still be expected to take about one
million samples before the repetition count test would notice the problem.

4.4.2 Adaptive Proportion Test

The Adaptive Proportion Test is designed to detect a large loss of entropy that might occur as a
result of some physical failure or environmental change affecting the noise source. The test
continuously measures the local frequency of occurrence of a sample value in a sequence of noise
source samples to determine if the sample occurs too frequently. Thus, the test is able to detect
when some value begins to occur much more frequently than expected, given the source's assessed
entropy per sample. Note that this test is intended to detect more subtle failures of the noise source,
rather than the kind of total failure detected by the Repetition Count Test.
The test takes a sample from the noise source, and then counts the number of times that the same
value occurs within the next W-1 samples. If that count reaches the cutoff value C, the test declares
an error. The window size W is selected based on the alphabet size, and shall be assigned to 1024
if the noise source is binary (that is, the noise source produces only two distinct values) and 512 if
the noise source is not binary (that is, the noise source produces more than two distinct values).

jhill
Sticky Note
alpha should be greater than 2^(-100) to satisfy 4.5 cond (a).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Let next() yield the next sample from the noise source. Given a continuous sequence of noise
samples, the cutoff value C and the window size W, the adaptive proportion test is performed as
follows:

1. A= next()
2. B=1.
3. For i = 1 to W–1

If (A = next()) B=B+1
If (B ≥ C) signal a failure

4. Go to Step 1.

The cutoff value C is chosen such that the probability of observing C or more identical samples in
a window size of W is at most α. Mathematically, C satisfies the following equation10:

Pr (B ≥ C) ≤ α .

For binary sources, the developer is allowed to extend the test by also checking that W-B ≥ C,
which would guarantee that a binary value occurring too frequently will be caught on the first test
window.
For noise sources where the alphabet size is large (e.g., greater than 256), the submitter may reduce
the alphabet size to a lower value, using the method described in Section 6.4.

The following table gives example cutoff values for various min-entropy estimates per sample and
window sizes with α = 2−20.

Table 2 Example cutoff values of the Adaptive Proportion Test

Binary data
W=1024

Non-binary data
W=512

Entropy Cutoff
Value C Entropy Cutoff

Value C

0.2 941 0.5 410
0.4 840 1 311
0.6 748 2 177
0.8 664 4 62
1 589 8 13

10 This probability can be computed using widely-available spreadsheet applications. In Microsoft Excel, Open Office
Calc,and iWork Numbers, the calculation is done with the function =CRITBINOM(). For example, in Microsoft Excel, C
would be computed as =1+CRITBINOM(W, power(2,(−H)),1−α).

jhill
Sticky Note
See UL's public comments for corrections.
https://bit.ly/UL90BCOM

jhill
Sticky Note
This formula is incorrect. See UL's public comments for corrections. https://bit.ly/UL90BCOM

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

4.5 Developer-Defined Alternatives to the Continuous Health Tests

Developer-defined tests are always permitted in addition to the two approved tests listed in
Section 4.4. Under some circumstances, the developer-defined tests may take the place of the two
approved tests. The goal of the two approved continuous health tests specified in Section 4.4, is
to detect two conditions:
a. Some value is consecutively repeated many more times than expected, given the assessed

entropy per sample of the source.
b. Some value becomes much more common in the sequence of noise source outputs than

expected, given the assessed entropy per sample of the source.
The developer of the entropy source is in an excellent position to design health tests specific to the
source and its known and suspected failure modes. Therefore, this Recommendation also permits
developer-defined alternative health tests to be used in place of the approved tests in Section 4.4,
so long as the combination of the developer-defined tests and the entropy source itself can
guarantee that these two conditions will not occur without being detected by the entropy source
with at least the same probability.

For concreteness, these are the criteria that are required for any alternative continuous health tests:
a. If a single value appears more than 100/H consecutive times in a row in the sequence of

noise source samples, the test shall detect this with a probability of at least 99 %.

b. Let P = 2−H. If the noise source's behavior changes so that the probability of observing a
specific sample value increases to at least P* = 2−H/2, then the test shall detect this change with
a probability of at least 50 % when examining 50 000 consecutive samples from this degraded
source.

The use of one or more of the approved continuous health test described in Section 4.4 can be
avoided by providing convincing evidence that the failure being considered will be reliably
detected by the developer-defined continuous tests. This evidence may be a proof or the results of
statistical simulations.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

5 Testing the IID Assumption

The samples from a noise source are independent and identically distributed (IID) if each sample
has the same probability distribution as every other sample, and all samples are mutually
independent. The IID assumption significantly simplifies the process of entropy estimation. When
the IID assumption does not hold, i.e., the samples are either not identically distributed or are not
independently distributed (or both), estimating entropy is more difficult and requires different
methods.

This section includes statistical tests that are designed to find evidence that the samples are not IID
and if no evidence is found that the samples are non-IID, then it is assumed that the samples are
IID (see Section 3.1.2). These tests take the sequence S = (s1,…,sL), where si ϵ A = {x1,…,xk}, as
input, and test the hypothesis that the values in S are IID. If the hypothesis is rejected by any of
the tests, the values in S are assumed to be non-IID.

Statistical tests based on permutation testing (also known as shuffling tests) are given in Section
5.1. Five additional chi-square tests are presented in Section 5.2.

5.1 Permutation Testing

Permutation testing is a way to test a statistical hypothesis in which the actual value of the test
statistic is compared to a reference distribution that is inferred from the input data, rather than a
standard statistical distribution. The general approach of permutation testing is to generate 10 000
permutations of the dataset, computing a test statistic for each permutation and comparing the
result with a test statistic computed on the original dataset; the process is listed in Figure 4. This
is repeated for each of the test statistics described in Sections 5.1.1 – 5.1.11. The shuffle algorithm
of step 2.1 is provided in Figure 5.

Input: S = (s1,…, sL)

Output: Decision on the IID assumption

1. For each test i
1.1. Assign the counters Ci,0 and Ci,1 to zero.
1.2. Calculate the test statistic Ti on S.

2. For j = 1 to 10 000
2.1. Permute S using the Fisher-Yates shuffle algorithm.
2.2. For each test i

2.2.1. Calculate the test statistic T on the permuted data.
2.2.2. If (T > Ti), increment Ci,0. If (T = Ti), increment Ci,1.

3. If ((Ci,0+Ci,1≤5) or (Ci,0 ≥ 9995)) for any i, reject the IID assumption; else, assume that
the noise source outputs are IID.

Figure 4 Generic Structure for Permutation Testing

jhill
Sticky Note
One can short circuit once a suitable number of values are above and below the reference value. This is a major speedup.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

If the samples are IID, permuting the dataset is not expected to change the value of the test statistics
significantly. In particular, the original dataset and permuted datasets are expected to be drawn
from the same distribution; therefore, their test statistics should be similar. Unusually high or low
test statistics are expected to occur infrequently. However, if the samples are not IID, then the
original and permuted test statistics may be significantly different. The counters Ci,0 and C i,1 are
used to find the ranking of the original test statistics among the permuted test statistics (i.e., where
a statistic for the original dataset fits within an ordered list of the permuted datasets). Extreme
values for the counters suggest that the data samples are not IID. If the sum of Ci,0 and C i,1 is less
than 5, it means that the original test statistic has a very high rank; conversely, if Ci,0 is greater than
9995, it means that the original test statistics has a very low rank. The cutoff values for C i,0 and
Ci,1 are calculated using a type I error probability of 0.001.

The tests described in the following subsections are intended to check the validity of the IID
assumption. Some of the tests (e.g., the compression test) are effective at detecting repeated
patterns of particular values (for example, strings of sample values that occur more often than
would be expected by chance if the samples were IID), whereas some of the other tests (e.g., the
number of directional runs test and the runs based on the median test) focus on the association
between the numeric values of the successive samples in order to find an indication of a trend or
some other relation, such as high sample values that are usually followed by low sample values.

Input: S = (s1,…, sL)

Output: Shuffled S = (s1,…, sL)

1. for i from L downto 1 do
a. Generate a random integer j such that 1≤ j ≤ i.
b. Swap sj and si

Figure 5 Pseudo-code of the Fisher-Yates Shuffle

The tests are applicable to both binary and non-binary data, but for some of the tests, the number
of distinct sample values, denoted k (the size of the set A), significantly affects the distribution of
the test statistics, and thus the type I error. For such tests, one of the following conversions is
applied to the input data, when the input is binary, i.e., k = 2.

• Conversion I partitions the sequences into eight-bit non-overlapping blocks, and counts the
number of ones in each block. Zeroes are appended when the last block has less than eight
bits. For example, let the 20-bit input be (1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1). The first
and the second eight-bit blocks include four and six ones, respectively. The last block,
which is not complete, includes two ones. The output sequence is (4, 6, 2).

• Conversion II partitions the sequences into eight-bit non-overlapping blocks, and
calculates the integer value of each block. For example, let the input message be
(1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1). The integer values of the first two blocks are 142,
and 219. Zeroes are appended when the last block has less than eight bits. Then, the last
block becomes (0,0,1,1,0,0,0,0) with an integer value of 48. The output sequence is (142,
219, 48).

jhill
Sticky Note
This can be done while initializing a new array, rather than shuffling in place. See https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_%22inside-out%22_algorithm

jhill
Sticky Note
Conversion I is just the popcount (the count of ones) of Conversion II. There is a specialized instruction to perform this conversion in most modern processors.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Descriptions of the individual tests will provide guidance on when to use each of these conversions.

5.1.1 Excursion Test Statistic

The excursion test statistic measures how far the running sum of sample values deviates from its
average value at each point in the dataset. Given S = (s1,…, sL), the test statistic T is the largest
deviation from the average and is calculated as follows:

1. Calculate the average of the sample values, i.e., 𝑋𝑋� = (s1 + s2 + … + sL) / L
2. For i = 1 to L

Calculate di = | ∑ 𝑠𝑠𝑗𝑗 − 𝑖𝑖 ×𝑖𝑖
𝑗𝑗=1 𝑋𝑋� |.

3. T = max (d1,…, dL).
Example 1: Let the input sequence be S = (2, 15, 4, 10, 9). The average of the sample values is 8,
and d1 = |2–8| = 6; d2 = |(2+15) – (2×8)| = 1; d3 = |(2+15+4) – (3×8)| = 3; d4 = |(2+15+4+10) –
(4×8)| = 1; and d5 = |(2+15+4+10+9) – (5×8)| = 0. Then, T = max(6, 1, 3, 1, 0) = 6.

Handling binary data: The test can be applied to binary data, and no additional conversion steps
are required.

5.1.2 Number of Directional Runs

This test statistic determines the number of runs constructed using the relations between
consecutive samples. Given S = (s1, …, sL), the test statistic T is calculated as follows:

1. Construct the sequence 𝑆𝑆′ = (𝑠𝑠1′ ,…, 𝑠𝑠𝐿𝐿−1′), where

𝑠𝑠𝑖𝑖′ = � −1, if 𝑠𝑠𝑖𝑖 > 𝑠𝑠𝑖𝑖+1
+1, if 𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1

 for i = 1, …, L–1.

2. The test statistic T is the number of runs in 𝑆𝑆′.

Example 2: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then 𝑆𝑆′= (+1, +1, +1, +1,
+1, +1, −1, −1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (−1, −1) and (+1, +1), so T
= 3.

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.

5.1.3 Length of Directional Runs

This test statistic determines the length of the longest run constructed using the relations between
consecutive samples. Given S = (s1,…, sL), the test statistic T is calculated as follows:

1. Construct the sequence 𝑆𝑆′= (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿−1′), where

jhill
Sticky Note
Note, this is invariant across shuffles.

jhill
Sticky Note
5.1.3 and 5.1.4 have the same setup. Combine these tests within the implementation.

jhill
Sticky Note
This is not invariant under symbol translation (even if this translation preserves ordering). This must be run on non-translated data.

jhill
Sticky Note
These (5.1.2-5.1.4) are all dependent on ordering, so any translation needs to be order preserving.

jhill
Sticky Note
These (5.1.2-5.1.4) are all dependent on ordering, so any translation needs to be order preserving.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

𝑠𝑠𝑖𝑖′ = � −1, if 𝑠𝑠𝑖𝑖 > 𝑠𝑠𝑖𝑖+1
+1, if 𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1

for i =1, …, L-1.

2. The test statistic T is the length of the longest run in 𝑆𝑆′.

Example 3: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S′= (+1, +1, +1, +1,
+1, +1, −1, −1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (−1, −1) and (+1, +1), so T
= 6.

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.

5.1.4 Number of Increases and Decreases

This test statistic determines the maximum number of increases or decreases between consecutive
sample values. Given S = (s1,…, sL), the test statistic T is calculated as follows:

1. Construct the sequence 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿−1′), where

𝑠𝑠𝑖𝑖′ = � −1, if 𝑠𝑠𝑖𝑖 > 𝑠𝑠𝑖𝑖+1
+1, if 𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1

for i = 1, …, L-1.

2. Calculate the number of –1’s and +1’s in 𝑆𝑆′; the test statistic T is the maximum of these
numbers, i.e., T = max (number of –1’s, number of +1’s).

Example 4: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then 𝑆𝑆′= (+1, +1, +1, +1,
+1, +1, −1, −1, +1, +1). There are eight +1’s and two −1’s in S′, so T = max (number of +1s,
number of −1s) = max (8, 2) = 8.

Handling binary data: To test binary input data, first apply the Conversion I to the input sequence.

5.1.5 Number of Runs Based on the Median

This test statistic determines the number of runs that are constructed with respect to the median of
the input data. Given S = (s1, …, sL), the test statistic T is calculated as follows:

1. Find the median 𝑋𝑋� of S = (s1, …, sL).

2. Construct the sequence 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿′) where

𝑠𝑠𝑖𝑖′ = � −1, if 𝑠𝑠𝑖𝑖 < 𝑋𝑋�
+1, if 𝑠𝑠𝑖𝑖 ≥ 𝑋𝑋�

for i =1, …, L.

3. The test statistic T is the number of runs in 𝑆𝑆′.

jhill
Sticky Note
5.1.6 is the same setup. Combine these tests within the implementation.

jhill
Sticky Note
Median is invariant across shuffles.

jhill
Sticky Note
These (5.1.5-5.1.6) are all dependent on ordering, so any translation needs to be order preserving.

jhill
Sticky Note
These (5.1.2-5.1.4) are all dependent on ordering, so any translation needs to be order preserving.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Example 5: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median of the input sequence
is 9. Then, 𝑆𝑆′ = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1).
There are five runs, hence T = 5.

Handling binary data: When the input data is binary, the median of the input data is assumed to
be 0.5. No additional conversion steps are required.

5.1.6 Length of Runs Based on Median

This test statistic determines the length of the longest run that is constructed with respect to the
median of the input data and is calculated as follows:

1. Find the median 𝑋𝑋� of S = (s1, …, sL).

2. Construct a temporary sequence 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿′) from the input sequence S = (s1, …, sL), as

𝑠𝑠𝑖𝑖′ = � −1, if 𝑠𝑠𝑖𝑖 < 𝑋𝑋�
+1, if 𝑠𝑠𝑖𝑖 ≥ 𝑋𝑋�

for i = 1, …, L.

3. The test statistic T is the length of the longest run in 𝑆𝑆′.
Example 6: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median for this data subset
is 9. Then, S ' = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1).
The longest run has a length of 2; hence, T =2.

Handling binary data: When the input data is binary, the median of the input data is assumed to
be 0.5. No additional conversion steps are required.

5.1.7 Average Collision Test Statistic

The average collision test statistic counts the number of successive sample values until a duplicate
is found. The average collision test statistic is calculated as follows:

1. Let C be a list of the number of the samples observed to find two occurrences of the same
value in the input sequence S = (s1, …, sL). C is initially empty.

2. Let i = 1.
3. While i < L

a. Find the smallest j such that (si, …, si+j-1) contains two identical values. If no such j
exists, break out of the while loop.

b. Add j to the list C.
c. i = i + j.

4. The test statistic T is the average of all values in the list C.
Example 7: Let the input sequence be S = (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). The first collision occurs for
j = 3, since the second and third values are the same. 3 is added to the list C. Then, the first three

jhill
Sticky Note
5.1.8 uses the same setup. Combine these tests within the implementation.

jhill
Sticky Note
These (5.1.5-5.1.6) are all dependent on ordering, so any translation needs to be order preserving.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

samples are discarded, and the next sequence to be examined is (2, 0, 1, 0, 1, 1, 2). The collision
occurs for j = 4. The third sequence to be examined is (1,1,2), and the collision occurs for j = 2.
There are no collisions in the final sequence (2). Hence, C = [3,4,2]. The average of the values in
C is T = 3.

Handling binary data: To test binary input data, first apply Conversion II to the input sequence.

5.1.8 Maximum Collision Test Statistic

The maximum collision test statistic counts the number of successive sample values until a
duplicate is found. The maximum collision test statistic is calculated as follows:

1. Let C be a list of the number of samples observed to find two occurrences of the same value
in the input sequence S = (s1, …, sL). C is initially empty.

2. Let i = 1.
3. While i < L

a. Find the smallest j such that (si,…, si+j-1) contains two identical values. If no such j
exists, break out of the while loop.

b. Add j to the list C.
c. i=i+j.

4. The test statistic T is the maximum value in the list C.
Example 8: Let the input data be (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). C = [3,4,2] is computed as in Example
7. T = max(3,4,2) = 4.

Handling binary data: To test binary input data, first apply Conversion II to the input sequence.

5.1.9 Periodicity Test Statistic

The periodicity test aims to determine the number of periodic structures in the data. The test takes
a lag parameter p as input, where p < L, and the test statistic T is calculated as follows:

1. Initialize T to zero.
2. For i = 1 to L − p

If (si = si+p), increment T by one.

Example 9: Let the input data be (2, 1, 2, 1, 0, 1, 0, 1, 1, 2), and let p = 2. Since si = si+p for five
values of i (1, 2, 4, 5 and 6), T = 5.

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

5.1.10 Covariance Test Statistic

The covariance test measures the strength of the lagged correlation. The test takes a lag value p <
L as input. The test statistic is calculated as follows:

1. Initialize T to zero.
2. For i = 1 to L – p

T=T+(si×si+p).

Example 10: Let the input data be (5, 2, 6, 10, 12, 3, 1), and let p be 2. T is calculated as (5×6) +
(2×10) + (6×12) + (10×3) + (12×1) = 164.

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.

5.1.11 Compression Test Statistic

General-purpose compression algorithms are well adapted for removing redundancy in a character
string, particularly involving commonly recurring subsequences of characters. The compression
test statistic for the input data is the length of that data subset after the samples are encoded into a
character string and processed by a general-purpose compression algorithm. The compression test
statistic is computed as follows:

1. Encode the input data as a character string containing a list of values separated by a single
space, e.g., “S = (144, 21, 139, 0, 0, 15)” becomes “144 21 139 0 0 15”.

2. Compress the character string with the bzip2 compression algorithm provided in [BZ2].
3. T is the length of the compressed string, in bytes.

Handling binary data: The test can be applied directly to binary data, with no conversion required.

5.2 Additional Chi-square Statistical Tests

This section includes additional chi-square statistical procedures to test independence and
goodness-of-fit. The independence tests attempt to discover dependencies in the probabilities
between successive samples in the (entire) sequence submitted for testing (see Section 5.2.1 for
non-binary data and Section 5.2.3 for binary data); the goodness-of-fit tests attempt to discover a
failure to follow the same distribution in ten data subsets produced from the (entire) input sequence
submitted for testing (see Section 5.2.2 for non-binary data and Section 5.2.4 for binary data). The
length of the longest repeated substring test is provided in Section 5.2.5.

5.2.1 Testing Independence for Non-Binary Data

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, the following steps are initially performed
to determine the number of bins nbin needed for the chi-square tests.

jhill
Sticky Note
This is not well specified, as bzip2 has numerous options.

jhill
Sticky Note
Integer overflow could well be a problem here.

jhill
Sticky Note
Note this is a somewhat odd data encoding.

jhill
Sticky Note
This is not invariant under symbol translation (even if this translation preserves ordering). This must be run on non-translated data.

jhill
Sticky Note
This is not invariant under symbol translation (even if this translation preserves ordering). This must be run on non-translated data.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

1. Find the proportion 𝑝𝑝𝑖𝑖 of each xi in S, i.e., 𝑝𝑝𝑖𝑖 = number of 𝑥𝑥𝑖𝑖 in 𝑆𝑆
𝐿𝐿

. Calculate the expected number
of occurrences of each possible pair (𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗) in S, as 𝑒𝑒𝑖𝑖,𝑗𝑗= 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝐿𝐿/2.

2. Allocate the possible (𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗) pairs, starting from the smallest 𝑒𝑒𝑖𝑖,𝑗𝑗, into bins such that the
expected value of each bin is at least five. The expected value of a bin is equal to the sum of
the 𝑒𝑒𝑖𝑖,𝑗𝑗 values of the pairs that are included in the bin. After allocating all pairs, if the expected
value of the last bin is less than five, merge the last two bins. Let nbin be the number of bins
constructed using this procedure.

After constructing the bins, the Chi-square test is executed as follows:

1. Let o be a list of nbin counts, each initialized to 0. For j=1 to L-1:
a. If the pair (sj, sj+1) is in bin i, increment oi by 1.
b. Let j = j+2.

2. The test statistic is calculated as T = ∑ (𝑜𝑜𝑖𝑖 − 𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖))2

𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖)
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖=1 . The test fails if T is greater than the

critical value of the Chi-square test statistic with (nbin –1) – (k–1) = nbin –k degrees of freedom
when the probability of type I error is chosen as 0.001. If the value of degrees of freedom is
less than one, do not apply the test.

Example 11: Let S be (2, 2, 3, 1, 3, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3,
2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 2, 2, 2, 1, 3, 3, 3, 2, 3,
2, 1, 2, 2, 3, 3, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1). The alphabet consists
of k = 3 values {1, 2, 3}; and p1, p2, and p3 are 0.21, 0.41 and 0.38, respectively. With L = 100, the
sorted expected values are calculated as:

(zi, zj) (1,1) (1,3) (3,1) (1,2) (2,1) (3,3) (2,3) (3,2) (2,2)
𝑒𝑒𝑖𝑖,𝑗𝑗 2.21 3.99 3.99 4.31 4.31 7.22 7.79 7.79 8.41

The pairs can be allocated into nbin = 6 bins.

Bin Pairs 𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖)
1 (1,1), (1,3) 6.2
2 (3,1), (1,2) 8.3
3 (2,1), (3,3) 11.53
4 (2,3) 7.79
5 (3,2) 7.79
6 (2,2) 8.41

The frequencies for the bins are calculated as 7, 6, 10, 8, 12, and 7 respectively, and the test statistic
is calculated as 3.46. The value of the degrees of freedom is 3 (= 6-3). The hypothesis is not
rejected, since the test statistic is less than the critical value 16.266.

jhill
Highlight
This should be floor(L/2), as this is the number of possible tuples.

jhill
Sticky Note
This test is not completely specified. Ordering of equally likely values is unspecified (suggestion: lexical sort of tuples as a secondary sort).

jhill
Sticky Note
Just calculate the p-value. In the Chi-squared test, the CDF of the Chi-squared distribution is based on the lower regularized gamma function. See https://en.wikipedia.org/wiki/Chi-squared_distribution#Cumulative_distribution_function.
Thus, the p-value is just 1-P(k/2,x/2)=Q(k/2,x/2), where P and Q denote the lower and upper regularized gamma functions (respectively), k is the degrees of freedom, and x is the calculated chi-squared test statistic.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

5.2.2 Testing Goodness-of-fit for Non-Binary Data

The test checks whether the distribution of samples is identical for different parts of the input.
Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, perform the following steps to calculate
the number of bins nbin for the test.

1. Let 𝑐𝑐𝑖𝑖 be the number of occurrences of xi in the entire dataset S, and let 𝑒𝑒𝑖𝑖 = 𝑐𝑐𝑖𝑖/10, for 1 ≤ i
≤ k. Note that ci is divided by ten because S will be partitioned into ten data subsets.

2. Let List[i] be the sample value with the ith smallest 𝑒𝑒𝑖𝑖 (e.g., List[1] has the smallest value for
𝑒𝑒𝑖𝑖; 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[2] has the next smallest value, etc.)

3. Starting from List[1], allocate the sample values into bins. Assign consecutive List[i] values to
a bin until the sum of the 𝑒𝑒𝑖𝑖 for those binned items is at least five, then begin assigning the
following List[i] value(s) to the next bin. If the expected value of the last bin is less than five,
merge the last two bins. Let nbin be the number of bins constructed after this procedure.

4. Let Ei be the expected number of sample values in Bin i; Ei is the sum of the ei for the listed
items in that bin. For example, if Bin 1 contains (x1, x10 and x50), then E1 = e1 + e10 + e50.

Example 12: Let the number of distinct sample values k be 4; and let c1 = 43, c2 = 55, c3 = 52 and
c4=10. After partitioning the entire input sequence into 10 parts, the expected value of each sample
becomes e1 = 4.3, e2 = 5.5, e3 = 5.2 and e4 = 1. The sample list starting with the smallest expected
value is formed as List = [4, 1, 3, 2]. The first bin contains sample 4 and 1, and the expected value
of Bin 1 becomes 5.3 (= e4+e1). The second bin contains sample 3, and the last bin contains sample
2. Since the expected value of the last bin is greater than five, no additional merging is necessary.
Given nbin, Ei and list of samples for each bin, the chi-square goodness-of-fit test is executed as
follows:

1. Partition S into ten non-overlapping sequences of length � 𝐿𝐿
10
�, where 𝑆𝑆𝑑𝑑 =

 (𝑠𝑠𝑑𝑑⌊𝐿𝐿/10⌋+1, … , 𝑠𝑠(𝑑𝑑+1)⌊𝐿𝐿/10⌋) for d = 0,…, 9. If L is not a multiple of 10, the remaining samples
are not used.

2. T = 0.
3. For d = 0 to 9

3.1. For i = 1 to nbin

3.1.1. Let oi be the total number of times the samples in Bin i appear in 𝑆𝑆𝑑𝑑.

3.1.2. T = T + (𝑜𝑜𝑖𝑖− 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖
.

The test fails if the test statistic T is greater than the critical value of chi-square with 9(nbin -1)
degrees of freedom when the type I error is chosen as 0.001.

5.2.3 Testing Independence for Binary Data

This test checks the independence assumption for binary data. A chi-square test for independence
between adjacent bits could be used, but its power is limited, due to the small output space (i.e.,
the use of binary inputs). A more powerful check can be achieved by comparing the frequencies

jhill
Sticky Note
This test is not completely specified. Ordering of equally likely values is unspecified (suggestion: lexical sort of tuples as a secondary sort).

jhill
Sticky Note
Just calculate the p-value. In the Chi-squared test, the CDF of the Chi-squared distribution is based on the lower regularized gamma function. See https://en.wikipedia.org/wiki/Chi-squared_distribution#Cumulative_distribution_function.
Thus, the p-value is just 1-P(k/2,x/2)=Q(k/2,x/2), where P and Q denote the lower and upper regularized gamma functions (respectively), k is the degrees of freedom, and x is the calculated chi-squared test statistic.

jhill
Highlight
In step 1 of the first list in this section, c_i is calculated as a count of that symbol in all the data, including any data that is discarded in step 1 of the second list of this section. When e_i is calculated by dividing c_i by 10, the resulting expectation will be too high in the case where both L is not divisible by 10 and that symbol was present in the discarded data. To correct this, either set e_i=(c_i/L) *floor(L/10) or create the c_i values by counting symbols in the first 10*floor(L/10) elements of the input data.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

of m-bit tuples to their expected values that are calculated by multiplying the probabilities of each
successive bit, i.e., assuming that the samples are independent. If nearby bits are not independent,
then the expected probabilities of m-bit tuples derived from their bit probabilities will be biased
for the whole dataset, and a chi-square test statistic will be much larger than expected.

Given the input binary data S = (s1, …, sL), the length of the tuples, m, is determined as follows:

1. Let p0 and p1 be the proportion of zeroes and ones in S, respectively, i.e., 𝑝𝑝0 = # 0′s in 𝑆𝑆
𝐿𝐿

,

and 𝑝𝑝1 = # 1′s in 𝑆𝑆
𝐿𝐿

.

2. Find the maximum integer m such that min(𝑝𝑝0,𝑝𝑝1)𝑚𝑚 �𝐿𝐿
𝑚𝑚
� ≥ 5. If m is greater than 11, set

m = 11. If m is 1, the test fails. For example, for p0 = 0.14, p1 = 0.86, and L = 1000, m = 2.
The test is applied if m ≥ 2.

1. Initialize T to 0.

2. Partition S into non-overlapping m-bit blocks, denoted as 𝐵𝐵 = (𝐵𝐵1,…, 𝐵𝐵�𝐿𝐿𝑚𝑚�
). If L is not a

multiple of m, discard the remaining bits.
3. For each possible m-bit tuple (a1, a2, …, am)

a. Let o be the number of times that the pattern (a1, a2, …, am) occurs in the input B.
b. Let w be the number of ones in (a1, a2, …, am).

c. Let e = 𝑝𝑝1𝑤𝑤(𝑝𝑝0)𝑚𝑚−𝑤𝑤 � 𝐿𝐿
𝑚𝑚
�.

d. T = T + (𝑜𝑜−𝑒𝑒)2

𝑒𝑒
 .

The test fails if the test statistic T is greater than the critical value of chi-square with 2m–2 degrees
of freedom, when the type I error is chosen as 0.001.

5.2.4 Testing Goodness-of-fit for Binary Data

This test checks the distribution of the number of ones in non-overlapping intervals of the input
data to determine whether the distribution of the ones remains the same throughout the sequence.
Given the input binary data S = (s1, …, sL), the test description is as follows:

1. Let p be the proportion of ones in the entire sequence S, i.e., p = (the number of ones in S)/
L.

2. Partition S into ten non-overlapping subsets of length � 𝐿𝐿
10
�, where 𝑆𝑆𝑑𝑑=

(𝑠𝑠𝑑𝑑⌊𝐿𝐿/10⌋+1, … , 𝑠𝑠(𝑑𝑑+1)⌊𝐿𝐿/10⌋) for d = 0, …, 9. If L is not a multiple of 10, the remaining bits
are discarded.

3. Initialize T to 0.
4. Let the expected number of zeros and ones in each sub-sequence Sd be

jhill
Sticky Note
Just calculate the p-value. In the Chi-squared test, the CDF of the Chi-squared distribution is based on the lower regularized gamma function. See https://en.wikipedia.org/wiki/Chi-squared_distribution#Cumulative_distribution_function.
Thus, the p-value is just 1-P(k/2,x/2)=Q(k/2,x/2), where P and Q denote the lower and upper regularized gamma functions (respectively), k is the degrees of freedom, and x is the calculated chi-squared test statistic.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

𝑒𝑒0 = (1 − 𝑝𝑝) �
𝐿𝐿

10
�,

 𝑒𝑒1 = 𝑝𝑝 �
𝐿𝐿

10
�,

respectively.
5. For d = 0 to 9

a. Let 𝑜𝑜0 and 𝑜𝑜1 be the number of zeros and ones in 𝑆𝑆𝑑𝑑, respectively.

b. T = T + (𝑜𝑜0−𝑒𝑒0)2

𝑒𝑒0
+ (𝑜𝑜1−𝑒𝑒1)2

𝑒𝑒1
.

T is a chi-square random variable with nine degrees of freedom. The test fails if T is larger than
the critical value at 0.001, which is 27.887.

5.2.5 Length of the Longest Repeated Substring Test

This test checks the IID assumption using the length of the longest repeated substring. If this length
is significantly longer than the expected value, then the test invalidates the IID assumption. The
test can be applied to binary and non-binary inputs.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

1. Find the proportion 𝑝𝑝𝑖𝑖 of each possible input value xi in S, i.e., 𝑝𝑝𝑖𝑖 = number of 𝑥𝑥𝑖𝑖 in 𝑆𝑆
𝐿𝐿

.

2. Calculate the collision probability as pcol = ∑ 𝑝𝑝𝑖𝑖2𝑘𝑘
𝑖𝑖=1 .

3. Find the length of the longest repeated substring W, i.e., find the largest W such that, for at
least one i ≠ j, si = sj, si+1 = sj+1, ... , si+W-1 = sj+W-1.

4. The number of overlapping subsequences of length W in S is L–W+1, and the number of pairs
of overlapping subsequences is �𝐿𝐿 −𝑊𝑊 + 1

2 �.

5. Let X be a binomially distributed random variable with parameters N=�𝐿𝐿 −𝑊𝑊 + 1
2 � and a

probability of success pcol
W. Calculate the probability that X is greater than or equal to 1, i.e.,

Pr (X ≥ 1) = 1− Pr (X = 0) = 1− (1− pcol
W)N.

The test fails if Pr (X ≥ 1) is less than 0.001.

jhill
Highlight
This is equivalent to failing if log(0.999)/log(1-P_{col}^W) > N.

jhill
Sticky Note
Just calculate the p-value. In the Chi-squared test, the CDF of the Chi-squared distribution is based on the lower regularized gamma function. See https://en.wikipedia.org/wiki/Chi-squared_distribution#Cumulative_distribution_function.
Thus, the p-value is just 1-P(k/2,x/2)=Q(k/2,x/2), where P and Q denote the lower and upper regularized gamma functions (respectively), k is the degrees of freedom, and x is the calculated chi-squared test statistic.

jhill
Sticky Note
This can be efficiently calculated using a Suffix Tree/Trie or LCP array. See the notes at the end of this document.

jhill
Highlight
Note that A choose 2 is just A*(A-1)/2.

jhill
Highlight
Note that A choose 2 is just A*(A-1)/2.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

6 Estimating Min-Entropy

One of the essential requirements of an entropy source is the ability to reliably create random
outputs. To ensure that sufficient entropy is input to an RBG construction in SP 800-90C, the
amount of entropy produced per noise source sample must be determined. This section describes
generic estimation methods that will be used to test the noise source and also the conditioning
component, when non-vetted conditioning components are used. It should be noted that the entropy
estimation methods described in this section rely on some statistical assumptions that may not hold
for all types of noise sources. The methods should not replace in-depth analysis of noise sources,
but should be used to support the initial entropy estimate of the submitter (see Requirement 3 in
Section 3.2.2). An example noise source analysis is provided in [HaFis15].

Each estimator takes a sequence S = (s1, …, sL) as its input, where each si comes from an output
space A = {x1, …, xk} that is specified by the submitter. The estimators presented in this
Recommendation follow a variety of strategies, which cover a range of assumptions about the data.
For further information about the theory and origins of these estimators, see Appendix G. The
estimators that are to be applied to a sequence depend on whether the data has been determined to
be IID or non-IID. For IID data, the min-entropy estimation is determined as specified in Section
6.1, whereas for non-IID data, the procedures in Section 6.2 are used.

The estimators presented in this section work well when the entropy-per-sample is greater than
0.1. For alphabet sizes greater than 256, some of the estimators are not very efficient. Therefore,
for efficiency purposes, the method described in Section 6.4 can be used to reduce the alphabet
space of the outputs.

6.1 IID Track: Entropy Estimation for IID Data

For sources with IID outputs, the min-entropy estimation is determined using the most common
value estimate described in Section 6.3.1. It is important to note that this estimate typically
provides an overestimation when the samples from the source are not IID11.

6.2 Non-IID Track: Entropy Estimation for Non-IID Data

Many viable noise sources fail to produce IID outputs. Moreover, some sources may have
dependencies that are beyond the ability of the tester to address. To derive any utility out of such
sources, a diverse and conservative set of entropy tests are required. Testing sequences with
dependent values may result in overestimates of entropy. However, a large, diverse battery of
estimates minimizes the probability that such a source’s entropy is greatly overestimated.

11 However, it is possible for this estimate to slightly underestimate the true min-entropy. It is believed that this underestimation is
likely to not exceed one bit because of the relationship between min-entropy and the expected guessing work derived in Appendix
D. Of course, such an underestimate would not indicate that a guessing attack that ignores dependencies could be less costly than
one that takes the dependencies into account. As an example, consider a data sample consisting of pairs of bytes generated from
the joint distribution on two bytes X and Y, each having possible values A and B, where Pr(X=A, Y=A)=0.104,
Pr(X=A,Y=B)=0.332, Pr(X=B,Y=A)=0.239, and Pr(X=B,Y=B)=0.325. The min-entropy according to the MCV estimator is 0.712,
while the true min-entropy is 0.795.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

For non-IID data, the following estimators shall be calculated on the outputs of the noise source
and outputs of any conditioning component that is not listed in Section 3.1.5.1.1, and the minimum
of all the estimates is taken as the entropy assessment of the entropy source for this
Recommendation:

• The Most Common Value Estimate (Section 6.3.1),

• The Collision Estimate (Section 6.3.2),

• The Markov Estimate (Section 6.3.3),

• The Compression Estimate (Section 6.3.4),

• The t-Tuple Estimate (Section 6.3.5),

• The Longest Repeated Substring (LRS) Estimate (Section 6.3.6),

• The Multi Most Common in Window Prediction Estimate (Section 6.3.7),

• The Lag Prediction Estimate (Section 6.3.8),

• The MultiMMC Prediction Estimate (Section 6.3.9), and

• The LZ78Y Prediction Estimate (Section 6.3.10).
The Collision, Markov and Compression estimates are only applied to binary inputs.

6.3 Estimators

6.3.1 The Most Common Value Estimate

This method first finds the proportion 𝑝̂𝑝 of the most common value in the input dataset, and then
constructs a confidence interval for this proportion. The upper bound of the confidence interval is
used to estimate the min-entropy per sample of the source.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

1. Find the proportion of the most common value 𝑝̂𝑝 in the dataset, i.e.,

𝑝𝑝 �= max
𝑖𝑖

#{𝑥𝑥𝑖𝑖 in 𝑆𝑆}
𝐿𝐿

.

2. Calculate an upper bound on the probability of the most common value 𝑝𝑝𝑢𝑢 as

𝑝𝑝𝑢𝑢 = min�1, 𝑝̂𝑝 + 2.576�
𝑝̂𝑝 (1 − 𝑝̂𝑝)
𝐿𝐿 − 1

�,

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value.

3. The estimated min-entropy is –log2(𝑝𝑝𝑢𝑢).

jhill
Highlight
This is a local guess of an upper confidence interval bound, under the assumption that this most probable symbol proportion is distributed as per the binomial distribution (This CI estimate is made under a normal approximation of the binomial distribution); this assumption isn't reasonable, as the most probable symbol can never have less than ceil(L/k) symbols, so the entire low end of the binomial distribution has to be folded back into the rest of the distribution. If we knew a priori knew what the MLS was, we could use this estimate. These CI are too conservative for IID data (and all the non-IID cases that I've simulated).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

42

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Example: If the dataset is S = (0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 1), with L = 20, the
most common value is 1, with 𝑝̂𝑝 = 0.4. 𝑝𝑝𝑢𝑢 = 0.4 + 2.576√0.012 = 0.6895. The min-entropy
estimate is −log2 (0.6822) = 0.5363.

6.3.2 The Collision Estimate

The collision estimate, proposed by Hagerty and Draper [HD12], measures the mean number of
samples to the first collision in a dataset, where a collision is any repeated value. The goal of the
method is to estimate the probability of the most-likely output value, based on the collision times.
The method will produce a low entropy estimate for noise sources that have considerable bias
toward a particular output or value (i.e., the mean time until a collision is relatively short), while
producing a higher entropy estimate for a longer mean time to collision.

This entropy estimation method is only applied to binary inputs.

Given the input S = (s1, …, sL), where si ϵ A = {0,1},

1. Set v = 0, index =1.
2. Beginning with sindex, step through the input until any observed value is repeated; i.e., find

the smallest j such that si = sj, for some i with index ≤ 𝑖𝑖 < 𝑗𝑗.
3. Set v = v + 1, tv = j – index + 1 and index = j + 1.
4. Repeat steps 2-3 until the end of the dataset is reached.

5. Calculate the sample mean 𝑋𝑋�, and the sample standard deviation 𝜎𝜎�, of ti as

𝑋𝑋� = 1
𝑣𝑣
∑ 𝑡𝑡𝑖𝑖𝑣𝑣
𝑖𝑖=1 , 𝜎𝜎� = � 1

𝑣𝑣−1
∑ (𝑡𝑡𝑖𝑖− 𝑋𝑋�)2𝑣𝑣
𝑖𝑖=1 .

6. Compute the lower-bound of the confidence interval for the mean, based on a normal
distribution with a confidence level of 99 %,

𝑋𝑋′� = 𝑋𝑋� − 2.576
𝜎𝜎�
√𝑣𝑣

.

7. Using a binary search, solve for the parameter p, such that

𝑋𝑋′� = 𝑝𝑝𝑞𝑞−2 �1 +
1
2

(𝑝𝑝−1 − 𝑞𝑞−1)�𝐹𝐹(𝑞𝑞) − 𝑝𝑝𝑞𝑞−1
1
2

(𝑝𝑝−1 − 𝑞𝑞−1).

where

𝑞𝑞 = 1 − 𝑝𝑝,

 𝑝𝑝 ≥ 𝑞𝑞,

𝐹𝐹(1 𝑧𝑧⁄) = Γ(3, 𝑧𝑧)𝑧𝑧−3𝑒𝑒𝑧𝑧,

jhill
Sticky Note
Because we have now fixed k, there is no need to represent the F function at this level of generality. This is just F(z)=2 z^3 + 2 z^2 + z. See my comment in Appendix G.1.1.

jhill
Highlight
This is a binary alphabet, so (By the pigeonhole principal) after three symbols we are guaranteed to have a collision within the string. We thus only need to characterize the number of collisions in two bits and the number of collisions in three bits. All necessary values can be computed from these two counts.

jhill
Highlight
See Hagerty-Draper Prop 4.4.

jhill
Highlight
With the simplified F(z), this reduces to X'-bar = -2 p^2 + 2p + 2, which can just be solved for using the quadratic formula. We only care about the root in the interval [0.5,1], so p=0.5 + sqrt(1.25 - 0.5 * X'bar). If X'bar > 2.5, then the result is complex, and we should return p=1/2.

jhill
Highlight
Note that the smallest allowable value is X'-bar = 2. Values under this don't make sense (they would yield values of p>1).

jhill
Highlight
This is clearly a typo, and should be 0.6895, as above.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 43

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

and Γ(a,b) is the incomplete Gamma function defined as ∫ 𝑡𝑡𝑎𝑎−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑.∞
𝑏𝑏 An efficient

implementation of F(1/z) is provided in Appendix G.1.1. The bounds of the binary search
should be 1/2 and 1.

8. If the binary search yields a solution, then the min-entropy estimation is the negative
logarithm of the parameter, p:

min-entropy = –log2(p).

If the search does not yield a solution, then the min-entropy estimation is:

min-entropy = log2(2)=1.

Example: Suppose that S = (1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,
0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0). The collisions of the sequence are (1, 0, 0), (0, 1, 1), (1, 0, 0), (1, 0,
1), (0, 1, 0), (1, 1), (1, 0, 0), (1, 1), (0, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1). After step 5,
v=14, and the sequence (t1, … tv) is (3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2). Then 𝑋𝑋� = 2.7143,𝜎𝜎� =
0.4688, and 𝑋𝑋�′ = 2.3915. The solution to the equation is p = 0.7329, giving an estimated min-
entropy of 0.4483.

6.3.3 The Markov Estimate

In a first-order Markov process, the next sample value depends only on the latest observed sample
value; in an nth-order Markov process, the next sample value depends only on the previous n
observed values. Therefore, a Markov model can be used as a template for testing sources with
dependencies. The Markov estimate provides a min-entropy estimate by measuring the
dependencies between consecutive values from the input dataset. The min-entropy estimate is
based on the entropy present in any subsequence (i.e., chain) of outputs, instead of an estimate of
the min-entropy per output.

Samples are collected from the noise source, and specified as d-long chains of samples. From this
data, probabilities are determined for both the initial state and transitions between any two states.
These probabilities are used to determine the highest probability of any particular d-long chain of
samples. The corresponding maximum probability is used to determine the min-entropy present in
all such chains generated by the noise source. This min-entropy value is particular to d-long chains
and cannot be extrapolated linearly; i.e., chains of length wd will not necessarily have w times as
much min-entropy present as a d-long chain. It may not be possible to know what a typical output
length will be at the time of testing. Therefore, although not mathematically correct, in practice,
calculating an entropy estimate per sample (extrapolated from that of the d-long chain) provides
estimates that are close.

This entropy estimation method is only applied to binary inputs.

Given the input S = (s1, …, sL), where si ϵ A = {0,1},

1. Estimate the initial probabilities for each output value, 𝑃𝑃0 = #{0 in 𝑆𝑆}
𝐿𝐿

 and 𝑃𝑃1 = 1 − 𝑃𝑃0.
2. Let T be the 2×2 transition matrix of the form

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 44

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

 0 1
0 𝑃𝑃0,0 𝑃𝑃0,1
1 𝑃𝑃1,0 𝑃𝑃1,1

where the probabilities are calculated as

𝑃𝑃0,0 = #{00 in 𝑆𝑆}
#{00 in 𝑆𝑆}+#{01 in 𝑆𝑆} , 𝑃𝑃0,1 = #{01 in 𝑆𝑆}

#{00 in 𝑆𝑆}+#{01 in 𝑆𝑆},

 𝑃𝑃1,0 = #{10 in 𝑆𝑆}
#{10 in 𝑆𝑆}+#{11 in 𝑆𝑆}, and 𝑃𝑃1,1 = #{11 in 𝑆𝑆}

#{10 in 𝑆𝑆}+#{11 in 𝑆𝑆} .

3. Find the probability of the most likely sequence of outputs of length 128, as calculated
below.

Sequence Probability

00…0 𝑃𝑃0×𝑃𝑃0,0
127

0101…01 𝑃𝑃0×𝑃𝑃0,1
64×𝑃𝑃1,0

63

011…1 𝑃𝑃0×𝑃𝑃0,1×𝑃𝑃1,1
126

100…0 𝑃𝑃1×𝑃𝑃1,0×𝑃𝑃0,0
126

1010…10 𝑃𝑃1×𝑃𝑃1,0
64×𝑃𝑃0,1

63

11…1 𝑃𝑃1×𝑃𝑃1,1
127

4. Let 𝑝̂𝑝max be the maximum of the probabilities in the table given above. The min-entropy
estimate is the negative logarithm of the probability of the most likely sequence of outputs, 𝑝̂𝑝max:

min-entropy = min(–log2(𝑝̂𝑝max)/128,1)
Example: For the purpose of this example12, suppose that, L = 40 and S = (1, 0, 0, 0, 1, 1, 1, 0, 0,
1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0). 𝑃𝑃0 = 0.475 and
𝑃𝑃1 =0.525. The transition matrix is calculated as

 0 1
0 0.389 0.611

1 0.571 0.429
The probabilities of the possible sequences are

12 The test is designed for long sequences (i.e., L ≈ 1 000 000), for the purpose of the example, a very small value of L is used.

jhill
Sticky Note
Note: this can be calculated as a product of a particular initial probability, a particular end probability, and a pair (raised to the 63rd power).

This can all be calculated in terms of log fairly easily (once one ensures that you don't take the log of 0).

jhill
Highlight
Note, this is the only estimator that doesn't establish some sort of confidence interval.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 45

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Sequence Probability

00…0 3.9837×10-53

0101…01 4.4813×10-30

011…1 1.4202×10-47

10…0 6.4631×10-53

1010…10 4.6288×10-30

11…1 1.1021×10-47

The resulting entropy estimate is min(– log2 (4.6288×10-30)/128,1) = min(0.761,1) = 0.761.

6.3.4 The Compression Estimate

The compression estimate, proposed by Hagerty and Draper [HD12], computes the entropy rate of
a dataset, based on how much the dataset can be compressed. This estimator is based on the Maurer
Universal Statistic [Mau92]. The estimate is computed by generating a dictionary of values, and
then computing the average number of samples required to produce an output, based on the
dictionary. One advantage of using the Maurer statistic is that there is no assumption of
independence. When sequences with dependencies is tested with this statistic, the compression
rate is affected (and therefore the entropy), but an entropy estimate is still obtained. A calculation
of the Maurer statistic is efficient, as it requires only one pass through the dataset to provide an
entropy estimate.

Given a dataset from the noise source, the samples are first partitioned into two disjoint groups.
The first group serves as the dictionary for the compression algorithm; the second group is used
as the test group. The compression values are calculated over the test group to determine the mean,
which is the Maurer statistic. Using the same method as the collision estimate, the probability
distribution that has the minimum possible entropy for the calculated Maurer statistic is
determined. For this distribution, the entropy per sample is calculated as the lower bound on the
entropy that is present.

This entropy estimation method is only applied to binary inputs.

Given the input S = (s1, …, sL), where si ϵ A = {0,1},

1. Let b = 6. Create a new sequence, 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠⌊𝐿𝐿/𝑏𝑏⌋
′), by dividing S into non-overlapping

b-bit blocks. If L is not a multiple of b, discard the extra data.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 46

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

2. Partition the dataset, 𝑆𝑆′, into two disjoint groups. These two groups will form the dictionary
and the test data.

a. Create the dictionary from the first d = 1000 elements of 𝑆𝑆′, (𝑠𝑠1′ , … , 𝑠𝑠𝑑𝑑′).

b. Use the remaining 𝑣𝑣 = ⌊𝐿𝐿/𝑏𝑏⌋ − 𝑑𝑑 observations, (𝑠𝑠𝑑𝑑+1′ , … , 𝑠𝑠⌊𝐿𝐿/𝑏𝑏⌋
′), for testing.

3. Initialize the dictionary dict to an all zero array of size 2b. For i from 1 to d, let dict[𝑠𝑠𝑖𝑖′] = i.
The value of dict[𝑠𝑠𝑖𝑖′] is the index of the last occurrence of each 𝑠𝑠𝑖𝑖′ in the dictionary.

4. Run the test data against the dictionary created in Step 2.
a. Let D be a list of length v.

b. For i from 𝑑𝑑 + 1 to ⌊𝐿𝐿/𝑏𝑏⌋:

i. If dict[𝑠𝑠𝑖𝑖′] is non-zero, then Di-d = i – dict[𝑠𝑠𝑖𝑖′]. Update the dictionary with the
index of the most recent observation, dict[𝑠𝑠𝑖𝑖′]=i.

ii. If dict[si] is zero, add that value to the dictionary, i.e., dict[𝑠𝑠𝑖𝑖′] =i. Let Di-d =
i.

5. Calculate the sample mean, 𝑋𝑋�, and sample standard deviation13, 𝜎𝜎�, of (log2(D1), …,
log2(Dv)).

𝑋𝑋� =
∑ log2𝐷𝐷𝑖𝑖𝑣𝑣
𝑖𝑖=1

𝑣𝑣
 ,

𝑐𝑐 = 0.5907

and

𝜎𝜎� = 𝑐𝑐�
∑ (log2𝐷𝐷𝑖𝑖)2𝑣𝑣
𝑖𝑖=1
𝑣𝑣 − 1

− 𝑋𝑋�2 .

6. Compute the lower-bound of the confidence interval for the mean, based on a normal
distribution using

𝑋𝑋′� = 𝑋𝑋� −
2.576𝜎𝜎�
√𝑣𝑣

.

7. Using a binary search, solve for the parameter p, such that the following equation is true:

𝑋𝑋′� = 𝐺𝐺(𝑝𝑝) + (2𝑏𝑏 − 1)𝐺𝐺(𝑞𝑞),

 where

13 Note that a correction factor is applied to the standard deviation, as described in [Mau92] and computed with higher accuracy in
[CoNa98]. This correction factor reduces the standard deviation to account for dependencies in the Di values.

jhill
Sticky Note
All the binary searches use the same logic and should be implemented in the same code. It's important to understand and explicitly test the invariants each round to verify that they actually remain invariant as the search continues. In each of these cases, so long as the upper bound is, in fact, a valid upper bound, then one can always return the current upper bound (which translates to the lowest assessed min-entropy) in the event that various bizarre floating-point errors occur within the search. All functions whose values are being searched are at least weakly monotonically decreasing functions. "Equality" and notions of "close" are subtle! See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

jhill
Sticky Note
Note that this procedure (in particular the iterated sum in step 5) is likely to run into floating point precision issues. Care must be taken to avoid different answers between different compilers.

jhill
Highlight
See Hagerty-Draper Theorem 4.8.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

47

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

𝐺𝐺(𝑧𝑧) = 1
𝑣𝑣
∑ ∑ log2(𝑢𝑢)𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢)𝑡𝑡

𝑢𝑢=1
𝐿𝐿
𝑡𝑡=𝑑𝑑+1 ,

𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢) = �𝑧𝑧
2(1 − 𝑧𝑧)𝑢𝑢−1 𝑖𝑖𝑖𝑖 𝑢𝑢 < 𝑡𝑡
𝑧𝑧(1 − 𝑧𝑧)𝑡𝑡−1 𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑡𝑡

 ,

and

𝑞𝑞 =
1 − 𝑝𝑝

2𝑏𝑏 − 1
.

The bounds of the binary search should be 2−𝑏𝑏and 1.
8. If the binary search yields a solution, then the min-entropy is the negative logarithm of the

parameter, p:
min-entropy = –log2(p)/b.

If the search does not yield a solution, then the min-entropy estimation is:

min-entropy = 1.

Example: For illustrative purposes, suppose that d = 4 (instead of 1000), L = 48 and S = (1, 0, 0, 0,
1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1 ,1, 1,
0, 0, 0, 1, 1). After step 1, the new blocked sequence is 𝑆𝑆′ = (100011, 100101, 010111, 001100,
011100, 101010, 111011, 100011). The dictionary sequence is (100011, 100101, 010111,
001100), and the testing sequence is (011100, 101010, 111011, 100011). v = 4. After the dictionary
is initialized in step 3, it has the following values (only non-zero values are shown):

i 1 2 3 4

𝑠𝑠𝑖𝑖′ 100011 100101 010111 001100

dict[𝑠𝑠𝑖𝑖′] 1 2 3 4

After Step 4, the resulting D1 = 5, D2 = 6, D3 = 7, and D4 = 7. The values computed in step 5 are
𝑋𝑋� = 2.6304 and 𝜎𝜎� = 0.9074, and the value for step 6 is 𝑋𝑋′� = 1.4617. The value of p that solves
the equation in step 7 is 0.5715, and the min-entropy estimate is 0.1345.

6.3.5 t-Tuple Estimate

This method examines the frequency of t-tuples (pairs, triples, etc.) that appears in the input dataset
and produces an estimate of the entropy per sample, based on the frequency of those t-tuples. The
frequency of the t-tuple (r1, r2, …, rt) in S = (s1, …, sL) is the number of i’s such that si = r1, si+1 =
r2, …, si+t-1 = rt. It should be noted that the tuples can overlap.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

jhill
Sticky Note
There are major speedups to be had here by looking carefully at G(z). See the "Compression Estimate G Function Computation" section in the last few pages of this document for details.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

48

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

1. Find the largest t such that the number of occurrences of the most common t-tuple in S is
at least 35.

2. Let Q[i] store the number of occurrences of the most common i-tuple in S for i = 1, ..., t.
For example, in S=(2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), Q[1] =
max(#0’s,#1’s,#2’s) = #0’s = 9, and Q[2] = 4 is obtained by the number of the tuple 01 in
S.

3. For i = 1 to t, let P[i] = Q[i] / (L-i+1), and compute an estimate on the maximum individual
sample value probability as 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚[𝑖𝑖] = 𝑃𝑃[𝑖𝑖]1/𝑖𝑖. Let 𝑝̂𝑝max= max (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚[1], … ,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡]).

4. Calculate an upper bound on the probability of the most common value 𝑝𝑝𝑢𝑢 as

𝑝𝑝𝑢𝑢 = min�1, 𝑝̂𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 2.576�
𝑝̂𝑝𝑚𝑚𝑚𝑚𝑚𝑚 (1 − 𝑝̂𝑝𝑚𝑚𝑚𝑚𝑚𝑚)

𝐿𝐿 − 1
�,

5. The entropy estimate is calculated as –log2 (𝑝𝑝𝑢𝑢).
Example: For the purpose of this example, suppose that the cutoff is 3 instead of 35 in step one.
Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), and L = 21. The number
of occurrences of the most common 4-tuple is 2, which falls below the threshold, and therefore t
= 3. In step 2, Q[1] = 9, Q[2] = 4, and Q[3] = 3. P[1] = 0.4286, P[2] = 0.2, P[3] = 0.1579. Pmax[1]
= 0.4286, Pmax[2] = 0.4472, Pmax[3] = 0.5405, and 𝑝̂𝑝max=0.5405. The upper bound of a 99 %
confidence interval is 0.8276. The min-entropy estimate is −log2 (0.8276) = 0.273.

6.3.6 Longest Repeated Substring (LRS) Estimate

This method estimates the collision entropy (sampling without replacement) of the source, based
on the number of repeated substrings (tuples) within the input dataset. Although this method
estimates collision entropy (an upper bound on min-entropy), this estimate handles tuple sizes that
are too large for the t-tuple estimate, and is therefore a complementary estimate.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

1. Find the smallest u such that the number of occurrences of the most common u-tuple in S
is less than 35.

2. Find the largest v such that the number of occurrences of the most common v-tuple in S is
at least 2, and the most common (v+1)-tuple in S occurs once. In other words, v is the
largest length that a tuple repeat occurs. If v < u, this estimate cannot be computed.

3. For W = u to v, compute the estimated W-tuple collision probability

𝑃𝑃𝑊𝑊 =
∑ �𝐶𝐶𝑖𝑖2 �𝑖𝑖

�𝐿𝐿−𝑊𝑊+1
2 �

 ,

where Ci is the number of occurrences of the ith unique W-tuple. Compute the estimated
average collision probability per string symbol as 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑊𝑊 = 𝑃𝑃𝑊𝑊1/𝑊𝑊. Let 𝑝̂𝑝 =
 max(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢 , … ,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣).

jhill
Sticky Note
There may be no such t. (In this case, output an error.)

jhill
Sticky Note
This is t+1 from the prior test (if t exists). If t did not exist, then u=1. (Unlike the prior test, this is guaranteed to exist...)

jhill
Sticky Note
v is the length of the longest repeated substring (LRS). This is just the maximum of the LCP array.

jhill
Sticky Note
This can easily become an algorithm that grows exponentially with the tuple size if care isn't taken! Use an LCP array (or suffix trie) to calculate all the necessary C_i values in basically quadratic time. See the new appendix to this document for a few notes on performing this calculation.

Note, this formula is rather likely to overflow, unless suitable care is taken.

jhill
Sticky Note
This can easily become an algorithm that grows exponentially with the tuple size if care isn't taken! Use an LCP array (or suffix trie) to find the maximum of the C_i values in basically quadratic time. See the new appendix to this document for a few notes on performing this calculation.

jhill
Sticky Note
Note that A choose 2 is just A*(A-1)/2.

jhill
Sticky Note
Use of Aaron Kauffer's algorithm for this test seems the best approach forward. See http://www.untruth.org/~josh/sp80090b/Kaufer%20Further%20Improvements%20for%20SP%20800-90B%20Tuple%20Counts.pdf

jhill
Highlight
Use of Aaron Kauffer's algorithm for this test seems the best approach forward. See http://www.untruth.org/~josh/sp80090b/Kaufer%20Further%20Improvements%20for%20SP%20800-90B%20Tuple%20Counts.pdf

jhill
Highlight
Each one of these is a different looking distribution. Establishing the CI bounds using only the maximum yields an insufficiently conservative confidence interval.

jhill
Highlight
Each one of these is a different looking distribution. Establishing the CI bounds using only the maximum yields an insufficiently conservative confidence interval.

jhill
Highlight
This is a sort of average symbol probability for the i-length collision.

jhill
Highlight
This is a sort of average symbol probability for the W-length collision.

jhill
Highlight
This is a local guess of an upper confidence interval bound, under the assumption that this most probable symbol proportion is distributed as per the binomial distribution (This CI estimate is made under a normal approximation of the binomial distribution).

jhill
Highlight
This is an unbiased estimator for the collision probability. See "The Complexity of Estimating Rényi Entropy" by Acharya, Orlitsky, Suresh and Tyagi or "Improved Estimation of Collision Entropy in High and Low-Entropy Regimes and Applications to Anomaly Detection" by Skorski.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

49

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

4. Calculate an upper bound on the probability of the most common value 𝑝𝑝𝑢𝑢 as

𝑝𝑝𝑢𝑢 = min�1, 𝑝̂𝑝 + 2.576�
𝑝̂𝑝 (1 − 𝑝̂𝑝)
𝐿𝐿 − 1

�,

5. The entropy estimate is calculated as –log2 (𝑝𝑝𝑢𝑢).
Example: For the purpose of this example, suppose that the cutoff is 3 instead of 35 in step 1.
Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), and L = 21. In step 1, u is
calculated as 4, as the frequency of the most common 4-tuple is 2. In step 2, v is calculated as 5.
After step 3, P4 = 0.0131, P5 = 0.0074, Pmax,4 = 0.3381, Pmax,5 = 0.3744, and 𝑝̂𝑝 =
 max(0.3381, 0.3744) = 0.3744. After step 4, 𝑝𝑝𝑢𝑢 = 0.6531. The min-entropy estimate is −log2
(0.6531) = 0.6146.

6.3.7 Multi Most Common in Window Prediction Estimate

The Multi Most Common in Window (MultiMCW) predictor contains several subpredictors, each
of which aims to guess the next output, based on the last w outputs. Each subpredictor predicts the
value that occurs most often in that window of w previous outputs. The MultiMCW predictor keeps
a scoreboard that records the number of times that each subpredictor was correct, and uses the
subpredictor with the most correct predictions to predict the next value. In the event of a tie, the
most common sample value that has appeared most recently is predicted. This predictor was
designed for cases where the most common value changes over time, but still remains relatively
stationary over reasonable lengths of the sequence.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

1. Let window sizes be w1=63, w2=255, w3=1023, w4=4095, and N = L − w1. Let correct be
an array of N Boolean values, each initialized to 0.

2. Let scoreboard be a list of four counters, each initialized to 0. Let frequent be a list of four
values, each initialized to Null. Let winner = 1.

3. For i = w1 + 1 to L:
a. For j =1 to 4,

i. If i > wj, let frequentj be the most frequent value in (si-wj, si-wj+1, …, si-1). If
there is a tie, then the most frequent value that has appeared most recently
is assigned to frequentj.

ii. Else, let frequentj = Null.
b. Let prediction = frequentwinner.

c. If (prediction = si), let correcti- w1 = 1.

d. Update the scoreboard. For j =1 to 4,
i. If (frequentj = si)

1. Let scoreboardj = scoreboardj +1

jhill
Highlight
This is a local guess of an upper confidence interval bound, under the assumption that this most probable symbol proportion is distributed as per the binomial distribution (This CI estimate is made under a normal approximation of the binomial distribution).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

50

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

2. If scoreboardj ≥ scoreboardwinner, let winner =j
4. Let C be the number of ones in correct.

5. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 %
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ is calculated as:

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0,

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙 �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value.

6. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary
search to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 ×

1
𝑥𝑥𝑁𝑁+1

 ,

where 𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and x = x10, derived by iterating the recurrence relation

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1

for j from 1 to 10, and x0 = 1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 using the logarithm of these
equations is robust against overflows. Table 3 given in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐.

7. The min-entropy is the negative logarithm of the greater performance metric

min-entropy = −log2(max(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,
1
𝑘𝑘

)).

Example: Suppose that S = (1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 0, 0), so that L = 12. For the purpose of this
example, suppose that w1 = 3, w2 = 5, w3 = 7, w4 = 9 (instead of w1 = 63, w2 = 255, w3 = 1023, w4
= 4095). Then N = 9. In step 3, the values are as follows:

i frequent scoreboard
(step 3b)

Winner
(step 3b)

prediction si correcti-w1 scoreboard
(step 3d)

4 (1, --, --, --) (0, 0, 0, 0) 1 1 0 0 (0, 0, 0, 0)
5 (0, --, --, --) (0, 0, 0, 0) 1 0 2 0 (0, 0, 0, 0)
6 (2, 2, --, --) (0, 0, 0, 0) 1 2 1 0 (0, 0, 0, 0)
7 (1, 1, --, --) (0, 0, 0, 0) 1 1 1 1 (1, 1, 0, 0)
8 (1, 1, 1, --) (1, 1, 0, 0) 2 1 2 0 (1, 1, 0, 0)
9 (1, 2, 2, --) (1, 1, 0, 0) 2 2 2 1 (1, 2, 1, 0)

10 (2, 2, 2, 2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0)
11 (2, 2, 2,2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0)
12 (0, 0, 2, 0) (1, 2, 1, 0) 2 0 0 1 (2, 3, 1, 1)

jhill
Sticky Note
All the binary searches use the same logic and should be implemented in the same code. It's important to understand and explicitly test the invariants each round to verify that they actually remain invariant as the search continues. In each of these cases, so long as the upper bound is, in fact, a valid upper bound, then one can always return the current upper bound (which translates to the lowest assessed min-entropy) in the event that various bizarre floating-point errors occur within the search. All functions whose values are being searched are at least weakly monotonically decreasing functions. "Equality" and notions of "close" are subtle! See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

jhill
Sticky Note
Note that this procedure (step 6) is likely to run into floating point precision issues. Care must be taken to avoid different answers between different compilers.

The binary search to find a solution for the first equality here should be calculated after first taking the log of both sides.

jhill
Highlight
This is a local guess of an upper confidence interval bound, under the assumption that this most probable symbol proportion is distributed as per the binomial distribution (This CI estimate is made under a normal approximation of the binomial distribution).

jhill
Highlight
Equivalent to 0.01=(1-P_{global}')^N, so this value of P_{global}' is the largest value such that we expect to get no correct guesses after N trials at least 1% of the time.

jhill
Highlight
This value 0.99 is the target probability that there is no run of length r. Note that [Kelsey-McKay-Turan 2015] would seem to indicate that the sought value should instead be 0.01 (which would results in a greater value for P_local).

McKay commented "[The target probability] is not related to the [confidence interval], but rather can be tuned to the needs of a particular application... During the development of 90B, we looked at several different target probabilities. The main reason that we chose to set the target probability as 0.99 is because we wanted the local min-entropy estimate to be lower than the global min-entropy estimate only when a large number of correct guesses were clustered locally but the global estimate didn’t reflect it."

This calculation is as per Feller's _Introduction to Probability Theory and It's Applications_ Vol. 1, Chapter 13, section 7 (in particular this is equation 7.11, and x is a root of the denominator of equation 7.6).

jhill
Highlight
In practice, you can often stop well before this (and sometimes more than 10 are necessary...) This iteration is monotonic up and bounded. It is better to just wait for the value to converge in whatever numerical representation is being used.

jhill
Highlight
This is seeking a root for the polynomial f(x)=1-x+q p^r x^(r+1). To see this, note that x_j is monotonic up (by induction), x_j is bounded x_j <= 1/p (by induction), and thus the sequence converges. Convergence implies that (x_j - x_{j+1}) -> 0, or (alternately stated) f(x_j) ->0.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

51

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

After all of the predictions are made, correct = (0, 0, 0, 1, 0, 1, 0, 0, 1). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.3333,
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = 0.7627, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.036, and the resulting min-entropy estimate is 0.3908.

6.3.8 The Lag Prediction Estimate

The lag predictor contains several subpredictors, each of which predicts the next output, based on
a specified lag. The lag predictor keeps a scoreboard that records the number of times that each
subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the
next value.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

1. Let D = 128, and N = L −1. Let lag be a list of D values, each initialized to Null. Let correct
be a list of N Boolean values, each initialized to 0.

2. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1.
3. For i = 2 to L:

a. For d = 1 to D:

i. If (d < i), lagd = si−d,

ii. Else lagd = Null.
b. Let prediction = lagwinner.
c. If (prediction = si,) let correcti-1 = 1.
d. Update the scoreboard. For d = 1 to D:

i. If (lagd = si)
1. Let scoreboardd = scoreboardd +1.
2. If scoreboardd ≥ scoreboardwinner, let winner = d.

4. Let C be the number of ones in correct.

5. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 %
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ is calculated as:

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0,

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value.

6. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary
search to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 ×

1
𝑥𝑥𝑁𝑁+1

 ,

jhill
Sticky Note
As written, this requires on the order of 128L companions. It is faster to keep a set of k lists (one list per symbol) where each list contains the offsets where the corresponding symbol has occurred in the prior 128 symbols. When a symbol is encountered, you can then choose the corresponding list and then increment the scoreboard counters that correspond to the list entries.

jhill
Sticky Note
See 6.3.7 for notes on the final calculation.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

52

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

where

𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

and x = x10, derived by iterating the recurrence relation

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1

for j from 1 to 10, and x0=1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 using the logarithm of these
equations is robust against overflows. Table 3 in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.

7. The min-entropy is the negative logarithm of the greater performance metric

min-entropy = −log2(max(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,
1
𝑘𝑘

)).

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2), so that L = 10 and N = 9. For the purpose of
this example, suppose that D = 3 (instead of 128). The following table shows the values in step 3.

i lag Winner
(step 3b)

prediction si correcti-1 scoreboard
(step 3d)

2 (2, --, --) 1 2 1 0 (0, 0, 0)
3 (1, 2, --) 1 1 3 0 (0, 0, 0)
4 (3, 1, 2) 1 3 2 0 (0, 0, 1)
5 (2, 3, 1) 3 1 1 1 (0, 0, 2)
6 (1, 2, 3) 3 3 3 1 (0, 0, 3)
7 (3, 1, 2) 3 2 1 0 (0, 1, 3)
8 (1, 3, 1) 3 1 3 0 (0, 2, 3)
9 (3, 1, 3) 3 3 1 0 (0, 3, 3)
10 (1, 3, 1) 2 3 2 0 (0, 3, 3)

After all of the predictions are made, correct = (0, 0, 0, 1, 1, 0, 0, 0, 0). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.2222,
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = 0.6008, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.1167, and the resulting min-entropy estimate is 0.735.

6.3.9 The MultiMMC Prediction Estimate

The MultiMMC predictor is composed of multiple Markov Model with Counting (MMC)
subpredictors. Each MMC predictor records the observed frequencies for transitions from one
output to a subsequent output (rather than the probability of a transition, as in a typical Markov
model), and makes a prediction, based on the most frequently observed transition from the current
output. MultiMMC contains D MMC subpredictors running in parallel, one for each depth from 1
to D. For example, the MMC with depth 1 creates a first-order model, while the MMC with depth
D creates a Dth-order model. MultiMMC keeps a scoreboard that records the number of times that
each MMC subpredictor was correct, and uses the subpredictor with the most correct predictions
to predict the next value.

jhill
Highlight
This predictor benefits from using Aaron Kauffer's clever restructuring of the predictor code that interleaves the prediction and increment; see the NIST tool's predictor code for details.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

53

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

1. Let D = 16, and N = L − 2. Let subpredict be a list of D values, each initialized to Null. Let
correct be an array of N values, each initialized to 0. Let entries be an array of D values,
each initialized to 0, and let maxEntries = 100 000.

2. For d = 1 to D, let Md be a set of counters, where Md[x, y] denotes the number of observed
transitions from output x to output y for the d th-order MMC.

3. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1.
4. For i = 3 to L:

a. For d = 1 to D:

i. If d < i−1:

1. If [(si-d-1, …,si-2), si-1] is in Md, increment Md[(si-d−1, …,si−2), si−1] by
1.

2. Else if entriesd < maxEntries, add a counter for [(si−d−1, …,si−2), si− 1]
to the set, let Md[(si−d−1,…,si−2), si− 1] = 1 and increment entriesd by
1.

b. For d = 1 to D:
i. If d < i, find the y value that corresponds to the highest Md[(si-d,…,si-1), y]

value, and denote that y as ymax. If there is a tie, let ymax be the greatest y
in the tie. Let subpredictd = ymax. If all possible values of Md [(si-d,…,si-1),
y] are 0, then let subpredictd = Null.

c. Let prediction = subpredictwinner.
d. If (prediction = si), let correcti-2 = 1.
e. Update the scoreboard. For d = 1 to D:

i. If (subpredictd = si)
1. Let scoreboardd = scoreboardd +1.
2. If scoreboardd ≥ scoreboardwinner, let winner = d.

5. Let C be the number of ones in correct.

6. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 %
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ is calculated as:

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value.

jhill
Highlight
This imposes a data ordering dependency. Any translation needs to preserve order.

jhill
Highlight
Note that for binary symbols, this can be performed by simply encoding the prior symbols into a string, and then using that string as an index into an array. This is much quicker than using a fancy data structure.

jhill
Sticky Note
See 6.3.7 for notes on the final calculation.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

54

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

7. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary search
to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 ×

1
𝑥𝑥𝑁𝑁+1

 ,

where

𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

and x = x10, derived by iterating the recurrence relation

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1

for j from 1 to 10, and x0=1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 using the logarithm of these
equations is robust against overflows. Table 3 in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.

8. The min-entropy is the negative logarithm of the greater performance metric

min-entropy = −log2(max(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐,
1
𝑘𝑘

)).

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1), so that L = 9 and N = 7. For the purpose of this
example, further suppose that D = 3 (instead of 16). After each iteration of step 4 is completed,
the values are:

i subpredict scoreboard
(step 4c)

Winner
(step 4c)

prediction si correcti-2 scoreboard
(step 4e)

3 (Null, Null, Null) (0, 0, 0) 1 Null 3 0 (0, 0, 0)
4 (Null, Null, Null) (0, 0, 0) 1 Null 2 0 (0, 0, 0)
5 (1, Null, Null) (0, 0, 0) 1 1 1 1 (1, 0, 0)
6 (3, 3, Null) (1, 0, 0) 1 3 3 1 (2, 1, 0)
7 (2, 2, 2) (2, 1, 0) 1 2 1 0 (2, 1, 0)
8 (3, Null, Null) (2, 1, 0) 1 3 3 1 (3, 1, 0)
9 (2, 2, Null) (3, 1, 0) 1 2 1 0 (3, 1, 0)

Let {x→y:c} denote a nonzero count c for the transition from x to y. Models M1, M2, and M3 are
shown below after step 4a (the model update step) for each value of i.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

55

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

i M1 M2 M3
3 {2→1:1} -- --
4 {1→3:1},

{2→1:1}
{(2, 1)→3:1} --

5 {1→3:1},
{2→1:1},
{3→2:1}

{(1, 3)→2:1},
{(2, 1)→3:1}

{(2, 1, 3)→2:1}

6 {1→3:1},
{2→1:2},
{3→2:1}

{(1, 3)→2:1},
{(2, 1)→3:1},
{(3, 2)→1:1}

{(1, 3, 2)→1:1},
{(2, 1, 3)→2:1}

7 {1→3:2},
{2→1:2},
{3→2:1}

{(1, 3)→2:1},
{(2, 1)→3:2},
{(3, 2)→1:1}

{(1, 3, 2)→1:1},
{(2, 1, 3)→2:1},
{(3, 2, 1)→3:1}

8 {1→3:2},
{2→1:2},
{3→1:1},
{3→2:1}

{(1, 3)→1:1},
{(1, 3)→2:1},
{(2, 1)→3:2},
{(3, 2)→1:1}

{(1, 3, 2)→1:1},
{(2, 1, 3)→1:1},
{(2, 1, 3)→2:1},
{(3, 2, 1)→3:1}

9 {1→3:3},
{2→1:2},
{3→1:1},
{3→2:1}

{(1, 3)→1:1},
{(1, 3)→2:1},
{(2, 1)→3:2},
{(3, 1)→3:1},
{(3, 2)→1:1}

{(1, 3, 1)→3:1},
{(1, 3, 2)→1:1},
{(2, 1, 3)→1:1},
{(2, 1, 3)→2:1},
{(3, 2, 1)→3:1}

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 0). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.4286, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ =
0.9490, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.1307, and the resulting min-entropy estimate is 0.0755.

6.3.10 The LZ78Y Prediction Estimate

The LZ78Y predictor is loosely based on LZ78 encoding with Bernstein's Yabba scheme [Sal07]
for adding strings to the dictionary. The predictor keeps a dictionary of strings that have been
added to the dictionary so far, and continues adding new strings to the dictionary until the
dictionary has reached its maximum capacity. Each time that a sample is processed, every
substring in the most recent B samples updates the dictionary or is added to the dictionary.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},

1. Let B = 16, and N = L – B – 1. Let correct be an array of N Boolean values, each initialized
to 0. Let maxDictionarySize = 65 536.

2. Let D be an empty dictionary. Let dictionarySize = 0.
3. For i = B+2 to L:

a. For j=B down to 1:
i. If (si-j-1, …, si-2) is not in D, and dictionarySize < maxDictionarySize:

jhill
Highlight
This predictor benefits from using Aaron Kauffer's clever restructuring of the predictor code that interleaves the prediction and increment; see the NIST tool's predictor code for details.

jhill
Highlight
Note that for binary symbols, this can be performed by simply encoding the prior symbols into a string, and then using that string as an index into an array. This is much quicker than using a fancy data structure.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

56

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

1. Let D[si-j-1, …, si-2] be added to the dictionary.
2. Let D[si-j-1, …, si-2][si-1] = 0.
3. dictionarySize = dictionarySize + 1

ii. If (si-j-1, … , si-2) is in D,
1. Let D[si-j-1, …, si-2][si-1] = D[si-j-1, … ,si-2][si-1] + 1.

b. Use the dictionary to predict the next value, si. Let prediction = Null, and let
maxcount = 0. For j = B down to 1:

i. Let prev = (si−j, … si−1).
ii. If prev is in the dictionary, find the y ϵ {x1, …,xk} that has the highest

D[prev][y] value. In the event of a tie, let the y be the symbol with the higher
byte value. For example, if D[prev][1] and D[prev][5] both have the highest
value, then y = 5.

iii. If D[prev][y] > maxcount:
1. prediction = y.
2. maxcount = D[prev][y].

c. If (prediction = si), let correcti−B−1 = 1.

4. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 %
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ is calculated as:

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0,

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value.

5. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary
search to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 ×

1
𝑥𝑥𝑁𝑁+1

 ,

where 𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and x = x10, derived by iterating the recurrence relation

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1

for j from 1 to 10, and x0 = 1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 using the logarithm of these
equations is robust against overflows. Table 3 given in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.

6. The min-entropy is the negative logarithm of the greater performance metric

jhill
Sticky Note
Insert, "Let C be the number of ones in the array 'correct.'”

jhill
Highlight
This imposes a data ordering dependency. Any translation needs to preserve order.

jhill
Sticky Note
See 6.3.7 for notes on the final calculation.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 57

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

min-entropy = −log2 �max �𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎,
1
𝑘𝑘
��.

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2), and L = 13. For the purpose of this
example, suppose that B = 4 (instead of 16), then N = 8.

i Add to D prev Max D[prev] entry prediction si correcti-B-1

6 D[2, 1, 3, 2][1]
D[1, 3, 2][1]
D[3, 2][1]
D[2][1]

(1, 3, 2, 1) Null Null 3 0
(3, 2, 1) Null
(2, 1) Null
(1) Null

7 D[1, 3, 2, 1][3]
D[3, 2, 1][3]
D[2, 1][3]
D[1][3]

(3, 2, 1, 3) Null Null 1 0
(2, 1, 3) Null
(1, 3) Null
(3) Null

8 D[3, 2, 1, 3][1]
D[2, 1, 3][1]
D[1, 3][1]
D[3][1]

(2, 1, 3, 1) Null 3 3 1
(1, 3, 1) Null
(3, 1) Null
(1) 3

9 D[2, 1, 3, 1][3]
D[1, 3, 1][3]
D[3, 1][3]
D[1][3]

(1, 3, 1, 3) Null 1 1 1
(3, 1, 3) Null
(1, 3) 1
(3) 1

10 D[1, 3, 1, 3][1]
D[3, 1, 3][1]
D[1, 3][1]
D[3][1]

(3, 1, 3, 1) Null 3 2 0
(1, 3, 1) 3
(3, 1) 3
(1) 3

11 D[3, 1, 3, 1][2]
D[1, 3, 1][2]
D[3, 1][2]
D[1][2]

(1, 3, 1, 2) Null 1 1 1
(3, 1, 2) Null
(1, 2) Null
(2) 1

12 D[1, 3, 1, 2][1]
D[3, 1, 2][1]
D[1, 2][1]
D[2][1]

(3, 1, 2, 1) Null 3 3 1
(1, 2, 1) Null
(2, 1) 3
(1) 3

13 D[3, 1, 2, 1][3]
D[1, 2, 1][3]
D[2, 1][3]
D[1][3]

(1, 2, 1, 3) Null 1 2 0
(2, 1, 3) 1
(1, 3) 1
(3) 1

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 1, 0). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.5, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ =
0.9868, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.1229, and the resulting min-entropy estimate is 0.0191.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 58

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

6.4 Reducing the Symbol Space

It is often the case that the data requirements for a test on noise source samples depends on the
number of possible different symbols from the noise source (i.e., the size of the alphabet A, denoted
k). For example, consider two different noise sources. The first source outputs 4-bit samples, and
thus has a possible total of 24 = 16 different symbols, and the second source outputs 32-bit samples,
for a possible total of 232 different symbols.

In many cases, the variability in the output that contributes to the entropy in a sample may be
concentrated among some portion of the bits in the sample. For example, consider a noise source
that outputs 32-bit high-precision clock samples that represent the time it takes to perform some
system process. Suppose that the bits in a sample are ordered in the conventional way, so that the
lower-order bits of the sample correspond to the higher resolution measurements of the clock. It is
easy to imagine that in this case, the low-order bits would contain most of the variability. In fact,
it would seem likely that some of the high-order bits may be constantly 0. For this example, it
would be reasonable to truncate the 32-bit sample to a 4-bit string by taking the lower 4 bits, and
perform the tests on the 4-bit strings. Of course, it must be noted that in this case, only a maximum
of 4 bits of min-entropy per sample could be credited to the noise source.

The algorithm given below provides an example of a method for mapping the n-bit samples,
collected as specified in Section 3.1.1, to m-bit samples, where n ≥ m. The resulting strings can be
used as input to tests that may have infeasible data requirements if the mapping were not
performed. Note that after the mapping is performed, the maximum amount of entropy possible
per n-bit sample is m bits.

Given a noise source that produces n-bit samples, where n exceeds the bit-length that can be
handled by the test, the submitter may provide the tester with an ordered ranking of the bits in the
n-bit samples (see Section 3.2.2). The rank of ‘1’ corresponds to the bit assumed to be contributing
the most entropy to the sample, and the rank of n corresponds to the bit contributing the least
amount. If multiple bits contribute the same amount of entropy, the ranks can be assigned
arbitrarily among those bits. The following algorithm, or its equivalent, is used to assign ranks.

Input: A noise source and corresponding statistical model with samples of the form X = a1a2…an,
where each ai is a bit.

Output: An ordered ranking of the bits a1 through an, based on the amount of entropy that each
bit is assumed to contribute to the noise source outputs.

1. Set M = {a1, a2, …, an}.
2. For i = 1 to n:

a. Choose an output bit a from M such that no other bit in M is assumed to
contribute more entropy to the noise source samples than a.

b. Set the ranking of a to i.
c. Remove a from M.

Given the ranking, n-bit samples are mapped to m-bit samples by simply taking the m-bits of
greatest rank in order (i.e., bit 1 of the m-bit string is the bit from an n-bit sample with rank 1, bit

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

59

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

2 of the m-bit string is the bit from an n-bit sample with rank 2, … and bit m of the m-bit string is
the bit from an n-bit sample with rank m).

Note that for the estimators in Section 6, a reference to a sample in the dataset will be interpreted
as a reference to the m-bit subsets of the sample when the test necessitates processing the dataset
as specified in this section.

The submitter is allowed to use an alternative method to reduce symbol size. The submitter shall
provide a description of the alternative method they use and an argument as to why this method is
more suitable for the noise source shall be provided.

jhill
Sticky Note
Note that grouping into groups of nearby symbols is an alternate way of accomplishing this reduction. This is specifically useful if large scale changes are more important than the low level noise. (e.g., a nice quantum source making large scale changes, as compared to low level electrical noise.)

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 60

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Acronyms

Selected acronyms and abbreviations used in this paper are defined below.

AES Advanced Encryption Standard

API Application Programming Interface

ANS American National Standard

CAVP Cryptographic Algorithm Validation Program

CBC-MAC Cipher Block Chaining Message Authentication Code

CMVP Cryptographic Module Validation Program

DRBG Deterministic Random Bit Generator

FIPS Federal Information Processing Standard

HMAC Hash-based Message Authentication Code

IID Independent and Identically Distributed

LRS Longest Repeated Substring

NIST National Institute of Standards and Technology

NRBG Non-deterministic Random Bit Generator

NVLAP National Voluntary Laboratory Accreditation Program

RAM Random Access Memory

RBG Random Bit Generator

SP NIST Special Publication

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 61

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Glossary

Alphabet A finite set of two or more symbols.

Alphabet size The number of distinct symbols that the noise source produces.

Algorithm A clearly specified mathematical process for computation; a set
of rules that, if followed, will give a prescribed result.

Approved FIPS-approved or NIST-Recommended.

Array A fixed-length data structure that stores a collection of elements,
where each element is identified by its integer index.

Assessment (of entropy)
An evaluation of the amount of entropy provided by a (digitized)
noise source and/or the entropy source that employs it.

Biased
A value that is chosen from an alphabet space is said to be biased
if one value is more likely to be chosen than another value.
(Contrast with unbiased.)

Binary data (from a
noise source)

Digitized output from a noise source that consists of a single bit;
that is, each sampled output value is represented as either 0 or 1.

Bitstring
An ordered sequence of 0’s and 1’s. The leftmost bit is the most
significant bit.

Collision An instance of duplicate sample values occurring in a dataset.

Conditioning (of noise
source output)

A method of processing the raw data to reduce bias and/or ensure
that the entropy rate of the conditioned output is no less than some
specified amount.

Confidence interval

An interval estimate [low, high] of a population parameter. If the
population is repeatedly sampled, and confidence intervals are
computed for each sample with significance level α,
approximately 100(1− α) % of the intervals are expected to
contain the true population parameter.

Continuous test

A type of health test performed within an entropy source on the
output of its noise source in order to gain some level of assurance
that the noise source is working correctly, prior to producing each
output from the entropy source.

Consuming application
(for an RBG)

An application that uses the output from an approved random bit
generator.

Dataset A sequence of sample values. (See Sample.)

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

62

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Deterministic Random
Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and (at least initially)
has access to a source of entropy input. The DRBG produces a
sequence of bits from a secret initial value called a seed, along
with other possible inputs. A DRBG is often called a
Pseudorandom Number (or Bit) Generator.

Developer
The party that develops the entire entropy source or the noise
source.

Dictionary
A dynamic-length data structure that stores a collection of
elements or values, where a unique label identifies each element.
The label can be any data type.

Digitization The process of generating bits from the noise source.

DRBG mechanism

The portion of an RBG that includes the functions necessary to
instantiate and uninstantiate the RBG, generate pseudorandom
bits, (optionally) reseed the RBG and test the health of the DRBG
mechanism. Approved DRBG mechanisms are specified in SP
800-90A.

Entropy
A measure of the disorder, randomness or variability in a closed
system. Min-entropy is the measure used in this
Recommendation.

Entropy rate

The rate at which a digitized noise source (or entropy source)
provides entropy; it is computed as the assessed amount of
entropy provided by a bitstring output from the source, divided by
the total number of bits in the bitstring (yielding the assessed bits
of entropy per output bit). This will be a value between zero (no
entropy) and one.

Entropy source
The combination of a noise source, health tests, and an optional
conditioning component that produce random bitstrings to be
used by an RBG.

Estimate
The estimated value of a parameter, as computed using an
estimator.

Estimator A technique for estimating the value of a parameter.

False positive

An erroneous acceptance of the hypothesis that a statistically
significant event has been observed. This is also referred to as a
type 1 error. When “health-testing” the components of a device,
it often refers to a declaration that a component has malfunctioned
– based on some statistical test(s) – despite the fact that the
component was actually working correctly.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

63

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Global performance
metric

For a predictor, the number of accurate predictions over a long
period.

Health testing
Testing within an implementation immediately prior to or during
normal operation to determine that the implementation continues
to perform as implemented and as validated.

Independent

Two random variables X and Y are independent if they do not
convey information about each other. Receiving information
about X does not change the assessment of the probability
distribution of Y (and vice versa).

Independent and
Identically Distributed
(IID)

A quality of a sequence of random variables for which each
element of the sequence has the same probability distribution as
the other values, and all values are mutually independent.

List
A dynamic-length data structure that stores a sequence of values,
where each value is identified by its integer index.

Local performance
metric

For a predictor, the length of the longest run of correct predictions

Markov model

A model for a probability distribution where the probability that
the ith element of a sequence has a given value depends only on
the values of the previous n elements of the sequence. The model
is called an nth order Markov model.

Min-entropy

The min-entropy (in bits) of a random variable X is the largest
value m having the property that each observation of X provides
at least m bits of information (i.e., the min-entropy of X is the
greatest lower bound for the information content of potential
observations of X). The min-entropy of a random variable is a
lower bound on its entropy. The precise formulation for min-
entropy is (log2 max pi) for a discrete distribution having
probabilities p1, ...,pk. Min-entropy is often used as a worst-case
measure of the unpredictability of a random variable.

Narrowest internal
width

The maximum amount of information from the input that can
affect the output. For example, if f(x) = SHA-1(x) || 01, and x
consists of a string of 1000 binary bits, then the narrowest internal
width of f(x) is 160 bits (the SHA-1 output length), and the output
width of f(x) is 162 bits (the 160 bits from the SHA-1 operation,
concatenated by 01).

Noise source
The component of an entropy source that contains the non-
deterministic, entropy-producing activity (e.g., thermal noise or
hard drive seek times).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

64

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Non-deterministic
Random Bit Generator
(NRBG)

An RBG that always has access to an entropy source and (when
working properly) produces outputs that have full entropy (see SP
800-90C). Also called a true random bit (or number) generator
(Contrast with a DRBG).

Non-physical non-
deterministic random
bit generator

An entropy source that does not use dedicated hardware but uses
system resources (RAM content, thread number etc.) or the
interaction of the user (time between keystrokes etc.).

On-demand test
A type of health test that is available to be run whenever a user or
a relying component requests it.

Output space
The set of all possible distinct bitstrings that may be obtained as
samples from a digitized noise source.

P-value
The probability that the chosen test statistic will assume values
that are equal to or more extreme than the observed test statistic
value, assuming that the null hypothesis is true.

Predictor
A function that predicts the next value in a sequence, based on
previously observed values in the sequence.

Probability distribution
A function that assigns a probability to each measurable subset of
the possible outcomes of a random variable.

Probability model A mathematical representation of a random phenomenon.

Pseudorandom

A deterministic process (or data produced by such a process)
whose output values are effectively indistinguishable from those
of a random process as long as the internal states and internal
actions of the process are unknown. For cryptographic purposes,
“effectively indistinguishable” means “not within the
computational limits established by the intended security
strength.”

Random Bit Generator
(RBG)

A device or algorithm that outputs a random sequence that is
effectively indistinguishable from statistically independent and
unbiased bits. An RBG is classified as either a DRBG or an
NRBG.

Raw data Digitized output of the noise source.

Physical non-
deterministic random
bit generator

An entropy source that uses dedicated hardware or uses a physical
experiment (noisy diode(s), oscillators, event sampling like
radioactive decay, etc.)

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

65

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Run (of output
sequences)

A sequence of identical values.

Sample

An observation of the raw data output by a noise source. Common
examples of output values obtained by sampling are single bits,
single bytes, etc. (The term “sample” is often extended to denote
a sequence of such observations; this Recommendation will
refrain from that practice.)

Security boundary

A conceptual boundary that is used to assess the amount of
entropy provided by the values output from an entropy source.
The entropy assessment is performed under the assumption that
any observer (including any adversary) is outside of that
boundary.

Sequence An ordered list of quantities.

Shall
The term used to indicate a requirement that needs to be fulfilled
to claim conformance to this Recommendation. Note that shall
may be coupled with not to become shall not.

Should
The term used to indicate an important recommendation. Ignoring
the recommendation could result in undesirable results. Note that
should may be coupled with not to become should not.

Start-up testing

A suite of health tests that are performed every time the entropy
source is initialized or powered up. These tests are carried out on
the noise source before any output is released from the entropy
source.

Stochastic model

A stochastic model is a mathematical description (of the relevant
properties) of an entropy source using random variables. A
stochastic model used for an entropy source analysis is used to
support the estimation of the entropy of the digitized data and
finally of the raw data. In particular, the model is intended to
provide a family of distributions, which contains the true (but
unknown) distribution of the noise source outputs. Moreover, the
stochastic model should allow an understanding of the factors that
may affect the entropy. The distribution of the entropy source
needs to remain in the family of distributions, even if the quality
of the digitized data goes down.

Submitter

The party that submits the entire entropy source and output from
its components for validation. The submitter can be any entity that
can provide validation information as required by this
Recommendation (e.g., developer, designer, vendor or any
organization).

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

66

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Symbol The value of the noise source output (i.e., sample value).

Testing laboratory An accredited cryptographic security testing laboratory.

Type I error Incorrectly rejection of a true null hypothesis.

Unbiased
A value that is chosen from a sample space is said to be unbiased
if all potential values have the same probability of being chosen.
(Contrast with biased.)

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 67

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

References

[BZ2] BZIP2 Compression Algorithm. http://www.bzip.org/.

[Cac97] C. Cachin, Entropy Measures and Unconditional Security in Cryptography,
PhD Thesis, Reprint as vol.1 of ETH Series in Information Security and
Cryptography, ISBN 3-89649-185-7, Hartung-Gorre Verlag, Konstanz, ETH
Zurich, 1997.

[CoNa98] J.S. Coron, D. Naccache, An Accurate Evaluation of Maurer's Universal Test,
Selected Areas in Cryptography 1998: 57-71

[Fel50] W. Feller, An Introduction to Probability Theory and its Applications, volume
one, chapter 13, John Wiley and Sons, Inc., 1950.

[FIPS140] Federal Information Processing Standard 140-2, Security Requirements for
Cryptographic Modules, May 25, 2001.
https://doi.org/10.6028/NIST.FIPS.140-2.

[FIPS180] Federal Information Processing Standard 180-4, Secure Hash Standard (SHS),
August 2015. https://doi.org/10.6028/NIST.FIPS.180-4.

[FIPS197] Federal Information Processing Standard 197, Specification for the Advanced
Encryption Standard (AES), November 2001.
https://doi.org/10.6028/NIST.FIPS.197.

[FIPS198] Federal Information Processing Standard 198-1, The Keyed-Hash Message
Authentication Code (HMAC), July 2008.
https://doi.org/10.6028/NIST.FIPS.198-1.

[FIPS202] Federal Information Processing Standard 202, SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions, August 2015.
https://doi.org/10.6028/NIST.FIPS.202.

[HaFis15] P. Haddad, V. Fischer, F. Bernard, Jean Nicolai, A Physical Approach for
Stochastic Modeling of TERO-Based TRNG. CHES 2015: 357-372

[HD12] P. Hagerty and T. Draper, Entropy Bounds and Statistical Tests, NIST
Random Bit Generation Workshop, December 2012,
https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop-
2012/documents/hagerty_entropy_paper.pdf. (Presentation available at
https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop-
2012/documents/hagerty_entropy_paper.pdf.)

[IG140-2] National Institute of Standards and Technology, Communications Security
Establishment Canada, Implementation Guidance for FIPS PUB 140-2 and

http://www.bzip.org/
https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop-2012/documents/hagerty_entropy_paper.pdf
https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop-2012/documents/hagerty_entropy_paper.pdf
https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop-2012/documents/hagerty_entropy_paper.pdf
https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop-2012/documents/hagerty_entropy_paper.pdf

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 68

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

the Cryptographic Module Validation Program, (last updated) September 11,
2017, https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-
Validation-Program/documents/fips140-2/FIPS1402IG.pdf.

[Kel15] J. Kelsey, Kerry A. McKay, M. Sonmez Turan, Predictive Models for Min-
Entropy Estimation, Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems 2015 (CHES 2015), France.
https://doi.org/10.1007/978-3-662-48324-4_19.

[Mau92] U. Maurer, A Universal Statistical Test for Random Bit Generators, Journal
of Cryptology, Vol. 5, No. 2, 1992, pp. 89-105.

[RaSt98] M. Raab, A. Steger: Balls into Bins - A Simple and Tight Analysis. RANDOM
1998: 159-170.

[Sal07] D. Salomon, Data Compression: The Complete Reference, Chapter 3,
Springer, 2007

[Shan51] C.E Shannon, Prediction and Entropy of Printed English, Bell System
Technical Journal, volume 30, pp. 50-64, January 1951,
https://archive.org/details/bstj30-1-50.

[SP800-38B] National Institute of Standards and Technology Special Publication (SP) 800-
38B Recommendations for Block Cipher Modes of Operation: The CMAC
Mode for Authentication, May 2005 (updated October 6, 2016),
https://doi.org/10.6028/NIST.SP.800-38B.

[SP800-57] National Institute of Standards and Technology Special Publication (SP) 800-
57 Part 1 Revision 4, Recommendation for Key Management – Part 1:
General, January 2016. https://doi.org/10.6028/NIST.SP.800-57pt1r4.

[SP800-90A] National Institute of Standards and Technology Special Publication (SP) 800-
90A Revision 1, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, June 2015.
https://doi.org/10.6028/NIST.SP.800-90Ar1.

[SP800-90C]

National Institute of Standards and Technology Special Publication (SP)
800-90C (Draft), Recommendations for Random Bit Generator (RBG)
Constructions, April 2016. https://csrc.nist.gov/publications/detail/sp/800-
90c/draft.

[SP800-107] National Institute of Standards and Technology Special Publication (SP) 800-
107 Revision 1, Recommendations for Applications using Approved Hash
Algorithms, August 2012. https://doi.org/10.6028/NIST.SP.800-107r1.

https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://doi.org/10.1007/978-3-662-48324-4_19
https://archive.org/details/bstj30-1-50
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://doi.org/10.6028/NIST.SP.800-107r1

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 69

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

 Min-Entropy and Optimum Guessing Attack Cost

Suppose that an adversary wants to determine at least one of several secret values, where each
secret value is independently chosen from a set of M possibilities, with probability distribution P
= {p1, p2, …, pM}. Assume that these probabilities are sorted so that p1 ≥ p2 ≥ …≥ pM . Consider a
guessing strategy aimed at successfully guessing as many secret values as possible. The adversary's
goal would be to minimize the expected number of guesses per successful recovery. Such a strategy
would consist of guessing a maximum of k possibilities for a given secret value, moving on to a
new secret value when either a guess is correct, or k incorrect guesses for the current value have
been made. In general, the optimum value of k can be anywhere in the range 1 ≤ k ≤ M, depending
on the probability distribution P. Note that when k = M, the Mth guess is considered a valid (though
trivial) guess. Regardless of the value of k chosen, it is clear that the k guesses selected for a given
secret value should be the k most likely possible values, in decreasing order of probability.

The expected work per success can be computed for this attack as follows. For 1 ≤ j ≤ k – 1, the
attacker will make exactly j guesses if the secret value is the jth most likely value, an event having
probability pj. The attacker will make exactly k guesses if the secret value is not any of the k – 1
most likely values, an event having probability 1 − ∑ 𝑝𝑝𝑗𝑗𝑘𝑘−1

𝑗𝑗=1 . Thus, the expected number of guesses
for the attack is given by the following:

𝑝𝑝1 + 2𝑝𝑝2 + ⋯+ (𝑘𝑘 − 1)𝑝𝑝𝑘𝑘−1 + 𝑘𝑘 �1 −�𝑝𝑝𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1

�.

Since this attack will be successful if and only if the secret value is one of the k most likely
possibilities, which is the case with probability ∑ 𝑝𝑝𝑗𝑗𝑘𝑘

𝑗𝑗=1 , the expected number of times the attack
must be performed until the first success is the reciprocal of this probability. Multiplying this
reciprocal by the expected number of guesses per attack gives the following as the expected work
per success:

𝑊𝑊𝑘𝑘(𝑃𝑃) =
𝑝𝑝1 + 2𝑝𝑝2 + ⋯+ (𝑘𝑘 − 1)𝑝𝑝𝑘𝑘−1 + 𝑘𝑘 �1 − ∑ 𝑝𝑝𝑗𝑗𝑘𝑘−1

𝑗𝑗=1 �
∑ 𝑝𝑝𝑗𝑗𝑘𝑘
𝑗𝑗=1

.

It is not critical to determine the value k* that minimizes 𝑊𝑊𝑘𝑘(𝑃𝑃), since the min-entropy of P leads
to an accurate approximation (and sometimes the exact value) of 𝑊𝑊𝑘𝑘∗(𝑃𝑃). Stated more precisely,
𝑊𝑊1(𝑃𝑃) = 1

𝑝𝑝1
 is an upper bound of 𝑊𝑊𝑘𝑘∗(𝑃𝑃), and it can be shown that 𝑊𝑊𝑘𝑘(𝑃𝑃) ≥ 1

2𝑝𝑝1
+ 1

2
 for all k

such that 1 ≤ k ≤ M. Since the min-entropy of P is − log2(𝑝𝑝1), these two bounds imply that the
error between the min-entropy of P and log2(𝑊𝑊𝑘𝑘∗(𝑃𝑃)) can be bounded as follows:

0 ≤ − log2 𝑝𝑝1 − log2�𝑊𝑊𝑘𝑘∗(𝑃𝑃)� ≤ 1 − log2(𝑝𝑝1 + 1).

Notice that since 1
𝑀𝑀

 ≤ 𝑝𝑝1 ≤ 1, the upper bound on the error approaches 0 as 𝑝𝑝1 → 1, and

alternatively, this bound approaches 1 as 𝑀𝑀 → ∞ and 𝑝𝑝1 → 1
𝑀𝑀

. In other words, the min-entropy of

jhill
Sticky Note
In particular, this is more straight forward if one imagines that an attacker has access to a large number of devices. If one wants to control the proportion of these devices can be broken by the attacker guessing the most likely symbol, then bounding the min entropy is the natural way to do so.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 70

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

P either corresponds to the exact expected work, measured in bits, needed to perform the optimum
guessing attack or over-estimates this work by at most one bit.

In order to prove the claim that 𝑊𝑊𝑘𝑘(𝑃𝑃) ≥ 1
2𝑝𝑝1

+ 1
2
, for 1 ≤ k ≤ M, rewrite the expected work per

success as

𝑊𝑊𝑘𝑘(𝑃𝑃) =
1 + (1 − 𝑝𝑝1) + (1 − 𝑝𝑝1 − 𝑝𝑝2) + ⋯+ (1 − 𝑝𝑝1 − 𝑝𝑝2 − ⋯− 𝑝𝑝𝑘𝑘−1)

𝑝𝑝1 + 𝑝𝑝2 + ⋯+ 𝑝𝑝𝑘𝑘
.

Consider an alternative probability distribution on a set of M possibilities 𝑃𝑃′ =
{𝑝𝑝1,𝑝𝑝1, … ,𝑝𝑝1, 𝑟𝑟, 0, … ,0}, where 𝑝𝑝1 occurs 𝑡𝑡 = � 1

𝑝𝑝1
� times and 𝑟𝑟 = 1 − 𝑡𝑡𝑝𝑝1. It is straightforward to

see that 𝑊𝑊𝑘𝑘(𝑃𝑃) ≥ 𝑊𝑊𝑘𝑘(𝑃𝑃′), since each term in the numerator of 𝑊𝑊𝑘𝑘(𝑃𝑃) is at least as large as the
corresponding term in 𝑊𝑊𝑘𝑘(𝑃𝑃′), and the denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) is at least as large as the
denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃).

Now to show that 𝑊𝑊𝑘𝑘(𝑃𝑃′) ≥ 1
2𝑝𝑝1

+ 1
2
. Based on the above formula for 𝑊𝑊𝑘𝑘(𝑃𝑃), for 1 ≤ k ≤ t + 1,

the numerator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) can be written as

� (1 − 𝑖𝑖𝑝𝑝1) = 𝑘𝑘 −
𝑘𝑘(𝑘𝑘 − 1)

2
𝑝𝑝1 = 𝑘𝑘𝑝𝑝1 �

1
𝑝𝑝1
−
𝑘𝑘 − 1

2
�

𝑘𝑘−1

𝑖𝑖=0
.

Consider the following two cases where 1 ≤ k ≤ t and k = t + 1. These are the only cases to check,
since if M > t + 1, then 𝑊𝑊𝑘𝑘(𝑃𝑃′) = 𝑊𝑊𝑡𝑡+1(𝑃𝑃′) for k > t + 1, because the remaining probabilities are
all zero. Furthermore, r = 0 if and only if 1

𝑝𝑝1
 is an integer, and when this happens, only the first

case needs to be addressed since 𝑊𝑊𝑡𝑡+1(𝑃𝑃′) = 𝑊𝑊𝑡𝑡(𝑃𝑃′).

For 1 ≤ k ≤ t, the denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) = 𝑘𝑘𝑝𝑝1. Then,

𝑊𝑊𝑘𝑘(𝑃𝑃′) =
𝑘𝑘𝑝𝑝1 �

1
𝑝𝑝1
− 𝑘𝑘−1

2
�

𝑘𝑘𝑝𝑝1
=

1
𝑝𝑝1
−
𝑘𝑘 − 1

2
,

≥
1
𝑝𝑝1
−

1
2

 ��
1
𝑝𝑝1
� − 1� ,

≥
1
𝑝𝑝1
−

1
2

 �
1
𝑝𝑝1
− 1� ,

≥
1

2𝑝𝑝1
+

1
2

 .

For k = t +1, the denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) is tp1+r =1. Let x = 1
𝑝𝑝1
− � 1

𝑝𝑝1
�, so 0 ≤ x < 1. This implies

𝑊𝑊𝑘𝑘(𝑃𝑃′) = 𝑘𝑘𝑝𝑝1 �
1
𝑝𝑝1
−
𝑘𝑘 − 1

2
� = ��

1
𝑝𝑝1
� + 1� 𝑝𝑝1 �

1
𝑝𝑝1
−

1
2
�

1
𝑝𝑝1
�� ,

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

71

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

= �
1
𝑝𝑝1
− 𝑥𝑥 + 1� �

1
2

+
𝑝𝑝1𝑥𝑥

2
� ,

=
1

2𝑝𝑝1
+

1
2

+
𝑝𝑝1𝑥𝑥(1 − 𝑥𝑥)

2
,

≥
1

2𝑝𝑝1
+

1
2

.

Therefore, it has been shown that 𝑊𝑊𝑘𝑘(𝑃𝑃) ≥ 𝑊𝑊𝑘𝑘(𝑃𝑃′) ≥ 1
2𝑝𝑝1

+ 1
2
 for 1 ≤ k ≤ M. Note that this lower

bound is sharp, since 𝑊𝑊𝑘𝑘(𝑃𝑃) achieves this value when P is a uniform distribution.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 72

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

The Narrowest Internal Width

The narrowest internal width of a conditioning component is the minimum number of bits of the
state that is dependent on the input to the functions, and influences the output of the function
(across all steps of making up the conditioning function). It can also be considered as the logarithm
of an upper bound on the number of distinct outputs, based on the size of the internal state.

Example: Let F(X) be a function defined as follows:

1. Let h1 be the output of SHA-256(X) truncated to 64 bits.
2. Return SHA-256(h1|| h1) truncated to 128 bits.

This function takes an arbitrarily-long input X and will yield 128-bit output value, but its internal
width is only 64 bits, because the value of the output only depends on the value of 64-bit h1.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

73

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

CBC-MAC Specification

CBC-MAC using a 128-bit approved block-cipher algorithm is one of the vetted conditioning
components. This CBC-MAC construction shall not be used for any other purpose than as the
algorithm for a conditioning component, as specified in Section 3.1.5.1.1. The following notation
is used for the construction.

Let E(Key, input_string) represent the approved encryption algorithm, with a Key and an
input_string as input parameters. The length of the input_string shall be an integer multiple of the
output length n of the block-cipher algorithm and shall always be the same length (i.e., variable
length strings shall not be used as input).

Let n be the length (in bits) of the output block of the approved block cipher algorithm, and let w
be the number of n-bit blocks in the input_string.

Let output_string be the n-bit output of CBC-MAC.

CBC-MAC:
Input: bitstring Key, input_string.
Output: bitstring output_string.
Process:

1. Let 𝑠𝑠0, 𝑠𝑠1, … 𝑠𝑠𝑤𝑤−1 be the sequence of blocks formed by dividing input string into n-bit
blocks; i.e., each 𝑠𝑠𝑖𝑖 consists of n bits.

2. V = 0.

3. For i = 0 to w − 1
V = E(Key, V ⊕ 𝑠𝑠𝑖𝑖).

4. Output V as the CBC-MAC output.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 74

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

Different Strategies for Entropy Estimation

Each of the estimation methods presented in Section 6 follows one of two approaches to estimating
min-entropy. The first approach is based on entropic statistics, first described for IID data in
[HD12], and later applied to non-IID data [HD12]. The second approach is based on predictors,
first described in [Kel15].

G.1 Entropic Statistics

The entropic statistics presented in [HD12], each designed to compute a different statistic on the
samples, provide information about the structure of the data: collision, compression, and Markov.
While the estimators (except for the Markov) were originally designed for application to
independent outputs, the tests have performed well when applied to data with dependencies.

The estimators assume that a probability distribution describes the output of a random noise source,
but that the probability distribution is unknown. The goal of each estimator is to reveal information
about the unknown distribution, based on a statistical measurement.

The collision and compression estimators in Section 6 each solve an equation for an unknown
parameter, where the equation is different for each estimator. These equations come from the target
statistic’s expected value using a near-uniform distribution, which provides a lower bound for min-
entropy. A near-uniform distribution is an instance of a one-parameter family of probability
distributions parameterized by p, Pp:

𝑃𝑃𝑝𝑝(𝑖𝑖) = �
𝑝𝑝, if 𝑖𝑖 = 0

1 − 𝑝𝑝
𝑘𝑘 − 1

, otherwise

where k is the number of states in the output space, and 𝑝𝑝 ≥ 1−𝑝𝑝
𝑘𝑘−1

, which is the case when 𝑝𝑝 ≥ 1
𝑘𝑘

.
In other words, one output state has the maximum probability, and the remaining output states are
equally likely. For more information, see [HD12].

G.1.1 Approximation of 𝐅𝐅(𝟏𝟏/𝐳𝐳)

The function F(1/z), used by the collision estimate (Section 6.3.2), can be approximated by the
following continued fraction:14

14 Derived from Equation 8.9.2 at http://dlmf.nist.gov/8.9.

http://dlmf.nist.gov/8.9

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
 USED FOR RANDOM BIT GENERATION

 75

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

1

𝑧𝑧 + −𝑘𝑘
1+ 1

𝑧𝑧+ 1−𝑘𝑘
1+ 2

𝑧𝑧+2−𝑘𝑘
1+3…

G.2 Predictors

Shannon first published the relationship between the entropy and predictability of a sequence in
1951 [Shan51]. Predictors construct models from previous observations, which are used to predict
the next value in a sequence. The prediction-based estimation methods in this Recommendation
work in a similar way, but attempt to find bounds on the min-entropy of integer sequences
generated by an unknown process (rather than the N-gram entropy of English text, as in [Shan51]).

The predictor approach uses two metrics to produce an estimate. The first metric is based on the
global performance of the predictor, called accuracy in machine-learning literature. Essentially, a
predictor captures the proportion of guesses that were correct. This approximates how well one
can expect a predictor to guess the next output from a noise source, based on the results over a
long sequence of guesses. The second metric is based on the greatest number of correct predictions
in a row, which is called the local performance metric. This metric is useful for detecting cases
where a noise source falls into a highly predictable state for some time, but the predictor may not
perform well on long sequences. The calculations for the local entropy estimate come from the
probability theory of runs and recurrent events [Fel50]. For more information about min-entropy
estimation using predictors, see [Kel15].

In order to make the predictor estimates lean toward a conservative underestimate of min-entropy,
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is replaced by 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ , the proportion corresponding to the 99th percentile of the number of
correct predictions based on the observed number of correct predictions. Note that the order in
which correct predictions occur does not influence the min-entropy estimate based on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. For
example, a predictor could always be correct for the first half of the outputs in a data set, and
always incorrect for the second half of the outputs. The min-entropy estimate of this sequence,
based on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, is half the data length in bits. On the other hand, for another sequence, the
predictor could have a 50 % chance of being correct for every sample in this sequence. The min-
entropy estimate of this second sequence, based on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, is the same as that of the first sequence.
However, the typical successful prediction run lengths are very different for these two sequences.
Therefore, the approach takes the local prediction performance into account in order to
conservatively decrease the min-entropy estimate if the observed local prediction behavior is
statistically significant, given the global prediction success rate. The predictor estimates
accomplish this by basing the min-entropy estimate on max (𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), where 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the
successful prediction proportion for which the observed longest run of correct predictions is the
99th percentile. This is effectively a one-tail hypothesis test that rejects 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ in favor of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 if
the observed longest run, given a success probability of 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ , is beyond the 99th percentile.

jhill
Sticky Note
Note that F(1/z) can be calculated using standard scientific programming function calls (just directly calculating the function as specified using a standard function for the incomplete gamma function). In our setting, this isn't necessary; for positive integer k the sum form of the incomplete gamma function is just a polynomial scaled by some elements that cancel in our function (see https://dlmf.nist.gov/8.4#E8 for details). For k=2 (the only value that presently applies) this whole mess simplifies to an unbelievably simple polynomial: F(z) = 2 z^3 + 2 z^2 + z.

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

76

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B

The following table provides pre-calculated values for Plocal for different r (length of the longest
run of ones +1) values when the length of the input sequence is 1 000 000.

Table 3 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 values for different r values when L=1 000 000.

r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
1 0.0000 36 0.6157 160 0.9045 370 0.9597
2 0.0001 37 0.6242 165 0.9074 380 0.9609
3 0.0022 38 0.6324 170 0.9101 390 0.9619
4 0.0100 39 0.6402 175 0.9127 400 0.9629
5 0.0253 40 0.6477 180 0.9152 410 0.9639
6 0.0468 41 0.6549 185 0.9175 420 0.9648
7 0.0728 42 0.6619 190 0.9198 430 0.9656
8 0.1014 43 0.6686 195 0.9219 440 0.9664
9 0.1313 44 0.6750 200 0.9239 450 0.9672

10 0.1614 45 0.6812 205 0.9258 460 0.9680
11 0.1911 46 0.6872 210 0.9276 470 0.9687
12 0.2200 47 0.6930 215 0.9293 480 0.9694
13 0.2479 48 0.6986 220 0.9309 490 0.9700
14 0.2746 49 0.7040 225 0.9325 500 0.9707
15 0.3000 55 0.7092 230 0.9340 550 0.9735
16 0.3242 60 0.7328 235 0.9355 600 0.9758
17 0.3471 65 0.7531 240 0.9369 650 0.9778
18 0.3688 70 0.7705 245 0.9382 700 0.9795
19 0.3893 75 0.7858 250 0.9395 750 0.9809
20 0.4088 80 0.7992 255 0.9407 800 0.9822
21 0.4272 85 0.8111 260 0.9419 850 0.9833
22 0.4447 90 0.8217 265 0.9430 900 0.9843
23 0.4613 95 0.8312 270 0.9441 950 0.9852
24 0.4770 100 0.8398 275 0.9452 1000 0.9860
25 0.4919 105 0.8476 280 0.9462 1500 0.9909
26 0.5060 110 0.8547 285 0.9471 2000 0.9933
27 0.5195 115 0.8612 290 0.9481 2500 0.9947
28 0.5323 120 0.8671 295 0.9490 3000 0.9957
29 0.5445 125 0.8726 300 0.9499 4000 0.9968
30 0.5561 130 0.8776 310 0.9516 5000 0.9975
31 0.5672 135 0.8823 320 0.9531 10000 0.9988
32 0.5778 140 0.8867 330 0.9546
33 0.5879 145 0.8907 340 0.9560
34 0.5976 150 0.8945 350 0.9573
35 0.6068 155 0.8980 360 0.9586

 07/18/2018

Compression Estimate G Function Calculation

Revision history

Revision Date Author Description of Change
1.0 06/11/2018 Joshua E. Hill, PhD Initial release.
1.1 07/18/2018 Joshua E. Hill, PhD Fixed notation issue with L. Noted a further refinement to the

sum-of-sums term in our final expression.

One significant calculation that (when implemented naively) slows performance of the SP800-90B tests is
the calculation of the function G within the Compression Estimate. If we take 𝐿𝐿′ = ⌊𝐿𝐿/𝑏𝑏⌋, then this function
is defined as

𝐺𝐺(𝑧𝑧) =
1
𝑣𝑣
� � log2(𝑢𝑢)𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢)

𝑡𝑡

𝑢𝑢=1

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

,

where

𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢) = �𝑧𝑧
2(1 − 𝑧𝑧)𝑢𝑢−1 if 𝑢𝑢 < 𝑡𝑡
𝑧𝑧(1 − 𝑧𝑧)𝑡𝑡−1 if 𝑢𝑢 = 𝑡𝑡

To do this calculation efficiently, we define a couple of recurrence relations.
First, define 𝐵𝐵𝑗𝑗 = (1 − 𝑧𝑧)𝑗𝑗−1. This can be defined using a recurrence relation, with 𝐵𝐵1 = 1, and 𝐵𝐵𝑗𝑗+1 =
𝐵𝐵𝑗𝑗(1 − 𝑧𝑧). Similarly, if we denote 𝑎𝑎𝑢𝑢 = log2(𝑢𝑢)(1 − 𝑧𝑧)𝑢𝑢−1, define

𝐴𝐴𝑘𝑘 = �𝑎𝑎𝑢𝑢

𝑘𝑘−1

𝑢𝑢=1

= � log2(𝑢𝑢)𝐵𝐵𝑢𝑢

𝑘𝑘−1

𝑢𝑢=1

Likewise, this can be expressed as 𝐴𝐴2 = 0, and
𝐴𝐴𝑘𝑘+1 = 𝐴𝐴𝑘𝑘 + log2(𝑘𝑘)𝐵𝐵𝑘𝑘.

We now expand our original function:

𝑣𝑣𝑣𝑣(𝑧𝑧) = � � log2(𝑢𝑢)𝑧𝑧2(1 − 𝑧𝑧)𝑢𝑢−1
𝑡𝑡−1

𝑢𝑢=1

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

+ � log2(𝑡𝑡)𝑧𝑧(1 − 𝑧𝑧)𝑡𝑡−1 .
𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

Using the terms defined above, we then have

𝐺𝐺(𝑧𝑧) =
1
𝑣𝑣
�𝑧𝑧2 � 𝐴𝐴𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

+ 𝑧𝑧 � log2(𝑡𝑡)𝐵𝐵𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

�.

The last sum in the brackets is equal to 𝑧𝑧(𝐴𝐴𝐿𝐿+1 − 𝐴𝐴𝑑𝑑+1), so we then have

𝐺𝐺(𝑧𝑧) =
1
𝑣𝑣
�𝑧𝑧(𝐴𝐴𝐿𝐿′+1 − 𝐴𝐴𝑑𝑑+1) + 𝑧𝑧2 � 𝐴𝐴𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

�.

This last form makes it clear that we can perform this calculation by computing 𝐴𝐴𝑗𝑗 where 𝑗𝑗 ∈
{1,2, … , 𝐿𝐿′ + 1} and summing as we go. As we are summing a large number of likely small values, it is
prudent to use some form of compensated addition (e.g., Kahan summation) or arbitrary-precision
addition to perform this calculation.

 07/18/2018

As a further note, we can rearrange the ordering of the terms in the sum-of-sums, yielding

� 𝐴𝐴𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

= � � 𝑎𝑎𝑢𝑢

𝑡𝑡−1

𝑢𝑢=1

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

= (𝐿𝐿′ − 𝑑𝑑)� 𝑎𝑎𝑢𝑢

𝑑𝑑

𝑢𝑢=1

+ � (𝐿𝐿′ − 𝑢𝑢) 𝑎𝑎𝑢𝑢

𝐿𝐿′−1

𝑢𝑢=𝑑𝑑+1

= (𝐿𝐿′ − 𝑑𝑑)𝐴𝐴𝑑𝑑+1 + � (𝐿𝐿′ − 𝑢𝑢) 𝑎𝑎𝑢𝑢

𝐿𝐿′−1

𝑢𝑢=𝑑𝑑+1

Direct calculation of this last form is somewhat less susceptible to the accumulation of floating point error
than the prior statement.

 06/11/2018

Algorithms for t-tuple and LRS Estimates

Revision history

Revision Date Author Description of Change
1.0 06/11/2018 Joshua E. Hill, PhD Initial release.

1 The SA and LCP Arrays
The notion of a Suffix Trie was originally specified in 1973 by Weiner, but the concept didn’t find regular
use in practice until significant refinement was introduced by Manber and Myers in 1990, and practical
fast (and eventually fast and asymptotically linear time) algorithms were found in the early 2000s, with
significant additional refinement continuing until about 2012. These algorithms are presently in heavy use
within bioinformatics, as they allow for comprehensive analysis of long sequences of symbols (e.g.,
organism genomes).

For our purposes, we’ll use the following definitions:

Let 𝑆𝑆 be the (𝐿𝐿 + 1)-string 𝑆𝑆 = (𝑠𝑠1, 𝑠𝑠2 , … , 𝑠𝑠𝐿𝐿, 𝑠𝑠𝐿𝐿+1 = $), where the (𝐿𝐿 + 1)-st element of the string, $,
denotes a terminator which is considered lexicographically smaller than all other string symbols (we adopt
this convention for 𝐿𝐿, because only 𝐿𝐿 values are actually free choices).

Denote the substring of 𝑆𝑆 ranging from 𝑖𝑖 to 𝑗𝑗 as 𝑆𝑆 [𝑖𝑖 , 𝑗𝑗].

The suffix array (SA) of S is defined to be an array of integers providing the starting positions of suffixes
of S in lexicographical order.

Let lcp (𝑣𝑣 ,𝑤𝑤) denote the length of the longest common prefix between two strings, 𝑣𝑣 and 𝑤𝑤.

The LCP array, 𝐿𝐿𝐿𝐿𝐿𝐿, is the integer array of size n such that 𝐿𝐿𝐿𝐿𝐿𝐿[1] is undefined and 𝐿𝐿𝐿𝐿𝐿𝐿 [𝑖𝑖] =
 lcp(S[SA[i − 1], 𝐿𝐿 + 1], 𝑆𝑆[S𝐴𝐴[𝑖𝑖], 𝐿𝐿 + 1]) for 2 ≤ 𝑖𝑖 ≤ 𝐿𝐿 + 1. Thus, LCP[𝑖𝑖] stores the length of the longest
common prefix of the lexicographically 𝑖𝑖-th smallest suffix and its predecessor in the suffix array.

2 Algorithms for Calculation of the SA and LCP Arrays
The magical thing is that the SA and LCP arrays can be calculated efficiently and in linear time. This is
somewhat shocking, as having access to these data structures provides an ability to efficiently perform
otherwise computationally-intensive string operations.

There are numerous publicly-specified algorithms for calculation of the SA and LCP arrays.1

1 We’ve experimented with several of the publicly available implementations and our own
implementations of some of the published approaches and have settled on using libdivsufsort
(https://github.com/y-256/libdivsufsort) to generate the suffix array. One note on this choice: libdivsufsort
does not require the addition of a unique terminator character, so its output requires slight adjustment to
be consistent with the above definitions.

https://github.com/y-256/libdivsufsort

 06/11/2018

Once we have the SA structure, we can induce the corresponding LCP array (there are also some
versions of the SA generation algorithms that also generate the LCP array).2

3 The t-Tuple and LRS Estimators
The t-tuple and LRS estimators both involve extracting information about 𝑗𝑗-tuples within the string for
various values of 𝑗𝑗. Calculating the 𝑡𝑡-tuple estimate requires finding the counts of the most common 𝑗𝑗-
tuples, which are then stored in the 𝑄𝑄 array.

The LRS estimate requires iterating over all 𝑗𝑗-tuples that occur in the string for a certain range of values of
𝑗𝑗, performing a calculation involving the number of such 𝑗𝑗-tuples within the string, and finding the length of
the longest repeated substring (LRS).

All of these quantities can be efficiently calculated using an SA and LCP array for the input string.

4 Calculating the Length of the Longest Repeated Substring
The length of the longest repeated substring is the largest value present in the LCP array. This can be
found by just iterating through the LCP array and finding the maximum value. This operation requires
𝑂𝑂(𝐿𝐿) operations once the LCP array is known (which itself can be an 𝑂𝑂(𝐿𝐿) operation).

If every symbol within the string is unique, this value will be 0. If the string is 𝐿𝐿 repeats of a single symbol
followed by the termination symbol, then the length of the LRS is 𝐿𝐿 − 1. As such, the length of the LRS for
an 𝐿𝐿-element string followed by the termination symbol is in the range [0, 𝐿𝐿 − 1].

5 Counting 𝒋𝒋-Tuples
The first 𝑗𝑗 characters of any string suffix that is at least 𝑗𝑗 elements long (not including the unique
termination character) is an instance of a 𝑗𝑗-tuple. When the suffixes are sorted (as within the Suffix Array),
then any repeats of this 𝑗𝑗-tuple must be adjacent to the suffix in question, and the LCP (for the
corresponding indexes) must be greater than or equal to 𝑗𝑗.

As such, you can enumerate all 𝑗𝑗-tuples that occur and count the number of times that they occur in the
string by stepping through the suffix array and determining the number of times this 𝑗𝑗-tuple occurs by
determining the length of runs where the LCP is greater than or equal to 𝑗𝑗.

2 We use Kasai (et al.’s) linear time algorithm to generate the LCP array, given the SA array and the
original string.

 06/11/2018

The following algorithm enumerates all the 𝑗𝑗-tuples (to find 𝐶𝐶𝑖𝑖 values):

Given the input where 𝑠𝑠𝑖𝑖 ∈ 𝐴𝐴 = {x1, … , x𝑘𝑘}, and the size of tuples we are looking for is 𝑗𝑗:

1. Make a new string 𝑆𝑆’ by appending a unique string terminator (that is lexicographically less than
all symbols in 𝐴𝐴) to 𝑆𝑆, 𝑆𝑆′ = (𝑠𝑠1, 𝑠𝑠2 , … , 𝑠𝑠𝐿𝐿, 𝑠𝑠𝐿𝐿+1 = $).

2. Generate the SA and LCP arrays for 𝑆𝑆’.
3. Let 𝑚𝑚 = 1
4. While 𝑚𝑚 ≤ 𝐿𝐿 + 1,

a. ℎ = 1
b. If 𝑆𝑆𝑆𝑆[𝑚𝑚] ≤ 𝐿𝐿 − 𝑗𝑗 + 1, then //This is a j-tuple to count

i. While 𝑚𝑚 + ℎ ≤ 𝐿𝐿 + 1 AND 𝑗𝑗 ≤ LCP[𝑚𝑚 + ℎ]
1. ℎ = ℎ + 1

ii. 𝐶𝐶𝑖𝑖 = ℎ for this 𝑗𝑗-tuple. Process as appropriate by retaining the largest such value,
or integrating the appropriate value into the 𝑃𝑃𝑊𝑊 calculation.

c. 𝑚𝑚 = 𝑚𝑚 + ℎ

This runs in 𝑂𝑂(𝐿𝐿) operations. One should clearly only calculate SA and LCP once for a fixed string. There
are other refinements possible, but the above outlines the basic approach.

6 References
Abouelhoda, Kurtz, and Ohlebusch. Replacing suffix trees with enhanced Suffix Arrays. Journal of
Discrete Algorithms, Vol 2, No 1, 2004.

Kasai, Lee, Arimura, Arikawa, and Park. Linear-Time Longest-Common-Prefix Computation in Suffix
Arrays and its Applications. Combinatorial Pattern Matching, Amir (Ed.) 2001.

Puglisi Smyth Turpin. A Taxonomy of Suffix Array Construction Algorithms. ACM Computing Surveys. Vol
39, No. 2, 2007. http://doi.acm.org/10.1145/1242471.1242472.

	NIST.SP.800-90B comments 20180529-02 Base
	NIST.SP.800-90B comments
	NIST SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation
	1 Introduction
	1.1 Scope
	1.2 Organization
	1.3 Symbols

	2 General Discussion
	2.1 Min-Entropy
	2.2 The Entropy Source Model
	2.2.1 Noise Source
	2.2.2 Conditioning Component
	2.2.3 Health Tests

	2.3 Conceptual Interfaces
	2.3.1 GetEntropy: An Interface to the Entropy Source
	2.3.2 GetNoise: An Interface to the Noise Source
	2.3.3 HealthTest: An Interface to the Entropy Source

	3 Entropy Source Validation
	3.1 Validation Process
	3.1.1 Data Collection
	3.1.2 Determining the track: IID track vs. non-IID track
	3.1.3 Initial Entropy Estimate
	3.1.4 Restart Tests
	3.1.4.1 Constructing Restart Data
	3.1.4.2 Validation Testing
	3.1.4.3 Sanity Check - Most Common Value in the Rows and Columns

	3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component
	3.1.5.1 Using Vetted Conditioning Components
	3.1.5.1.1 List of Vetted Conditioning Components
	3.1.5.1.2 Entropy Assessment using Vetted Conditioning Components

	3.1.5.2 Using Non-vetted Conditioning Components

	3.1.6 Additional Noise Sources

	3.2 Requirements for Validation Testing
	3.2.1 Requirements on the Entropy Source
	3.2.2 Requirements on the Noise Source
	3.2.3 Requirements on the Conditioning Component
	3.2.4 Requirements on Data Collection

	4 Health Tests
	4.1 Health Test Overview
	4.2 Types of Health Tests
	4.3 Requirements for Health Tests
	4.4 Approved Continuous Health Tests
	4.4.1 Repetition Count Test
	4.4.2 Adaptive Proportion Test

	4.5 Developer-Defined Alternatives to the Continuous Health Tests

	5 Testing the IID Assumption
	5.1 Permutation Testing
	5.1.1 Excursion Test Statistic
	5.1.2 Number of Directional Runs
	5.1.3 Length of Directional Runs
	5.1.4 Number of Increases and Decreases
	5.1.5 Number of Runs Based on the Median
	5.1.6 Length of Runs Based on Median
	5.1.7 Average Collision Test Statistic
	5.1.8 Maximum Collision Test Statistic
	5.1.9 Periodicity Test Statistic
	5.1.10 Covariance Test Statistic
	5.1.11 Compression Test Statistic

	5.2 Additional Chi-square Statistical Tests
	5.2.1 Testing Independence for Non-Binary Data
	5.2.2 Testing Goodness-of-fit for Non-Binary Data
	5.2.3 Testing Independence for Binary Data
	5.2.4 Testing Goodness-of-fit for Binary Data
	5.2.5 Length of the Longest Repeated Substring Test

	6 Estimating Min-Entropy
	6.1 IID Track: Entropy Estimation for IID Data
	6.2 Non-IID Track: Entropy Estimation for Non-IID Data
	6.3 Estimators
	6.3.1 The Most Common Value Estimate
	6.3.2 The Collision Estimate
	6.3.3 The Markov Estimate
	6.3.4 The Compression Estimate
	6.3.5 t-Tuple Estimate
	6.3.6 Longest Repeated Substring (LRS) Estimate
	6.3.7 Multi Most Common in Window Prediction Estimate
	6.3.8 The Lag Prediction Estimate
	6.3.9 The MultiMMC Prediction Estimate
	6.3.10 The LZ78Y Prediction Estimate

	6.4 Reducing the Symbol Space

	Appendix A— Acronyms
	Appendix B— Glossary
	Appendix C— References
	Appendix D— Min-Entropy and Optimum Guessing Attack Cost
	Appendix E— The Narrowest Internal Width
	Appendix F— CBC-MAC Specification
	Appendix G— Different Strategies for Entropy Estimation
	G.1 Entropic Statistics
	G.1.1 Approximation of 𝐅(𝟏/𝐳)
	G.2 Predictors

	Compression Estimate G Function Calculation

	SA and LCP Algorithms for t-tuple and LRS estimators
	Compression Estimate G Function Calculation_6_11_2018.pdf
	Compression Estimate G Function Calculation

	SA and LCP Algorithms for t-tuple and LRS estimators_6_11_2018.pdf
	Algorithms for t-tuple and LRS Estimates
	1 The SA and LCP Arrays
	2 Algorithms for Calculation of the SA and LCP Arrays
	3 The t-Tuple and LRS Estimators
	4 Calculating the Length of the Longest Repeated Substring
	5 Counting 𝒋-Tuples
	6 References

	SA and LCP Algorithms for t-tuple and LRS estimators_6_11_2018.pdf
	Algorithms for t-tuple and LRS Estimates
	1 The SA and LCP Arrays
	2 Algorithms for Calculation of the SA and LCP Arrays
	3 The t-Tuple and LRS Estimators
	4 Calculating the Length of the Longest Repeated Substring
	5 Counting 𝒋-Tuples
	6 References

	Compression Estimate G Function Calculation 20180718.pdf
	Compression Estimate G Function Calculation

	SA and LCP Algorithms for t-tuple and LRS estimators_6_11_2018.pdf
	Algorithms for t-tuple and LRS Estimates
	1 The SA and LCP Arrays
	2 Algorithms for Calculation of the SA and LCP Arrays
	3 The t-Tuple and LRS Estimators
	4 Calculating the Length of the Longest Repeated Substring
	5 Counting 𝒋-Tuples
	6 References

