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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance the 
development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in 
Federal information systems. The Special Publication 800-series reports on ITL’s research, 
guidelines, and outreach efforts in information system security, and its collaborative activities with 
industry, government, and academic organizations. 

Abstract 

This Recommendation specifies the design principles and requirements for the entropy sources 
used by Random Bit Generators, and the tests for the validation of entropy sources. These entropy 
sources are intended to be combined with Deterministic Random Bit Generator mechanisms that 
are specified in SP 800-90A to construct Random Bit Generators, as specified in SP 800-90C. 
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1 Introduction 

1.1 Scope 

Cryptography and security applications make extensive use of random numbers and random bits. 
However, the generation of random bits is problematic in many practical applications of 
cryptography. The NIST Special Publication (SP) 800-90 series of Recommendations provides 
guidance on the construction and validation of Random Bit Generators (RBGs) in the form of 
Deterministic Random Bit Generators (DRBGs) (also known as pseudorandom number 
generators) or Non-deterministic Random Bit Generators (NRBGs) that can be used for 
cryptographic applications. This Recommendation specifies how to design and test entropy 
sources that can be used by these RBGs. SP 800-90A addresses the construction of approved 
DRBG mechanisms, while SP 800-90C addresses the construction of RBGs from the mechanisms 
in SP 800-90A and the entropy sources in SP 800-90B. These Recommendations provide a basis 
for validation by NIST's Cryptographic Algorithm Validation Program (CAVP) and Cryptographic 
Module Validation Program (CMVP). 
 
An entropy source that conforms to this Recommendation can be used by RBGs to produce a 
sequence of random bits. The outputs of entropy sources should contain a sufficient amount of 
randomness to provide security. This Recommendation describes the properties that an entropy 
source must have to make it suitable for use by cryptographic random bit generators, as well as the 
tests used to validate the quality of the entropy source. 
 
The development of entropy sources that construct unpredictable outputs is difficult, and providing 
guidance for their design and validation testing is even more so. The testing approach defined in 
this Recommendation assumes that the developer understands the behavior of the source of 
randomness within the entropy source and has made a good-faith effort to produce an entropy 
source suitable for cryptographic applications (e.g., produces bitstrings that can provide entropy 
at a rate that meets (or exceeds) a specified value). It is expected that, over time, improvements to 
the guidance and testing will be made, based on experience in using and validating against this 
Recommendation.  
 
This Recommendation is intended for use by entropy source developers (the entity that designs 
and builds the entropy source or a portion thereof), submitters1 (the entity that submits the entropy 
source for validation testing), NVLAP-accredited laboratories that validate entropy sources and 
any entity with an interest in having an entropy source validated.  
 
This Recommendation was developed in concert with American National Standard (ANS) X9.82, 
a multi-part standard on random number generation.  

                                                 

1 The submitter may or may not be a developer; if the submitter is not the developer then the submitter may need to acquire required 
information from the developer before submission or during validation testing. 
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1.2 Organization 

Section 2 gives a general discussion on min-entropy, the entropy source model and the conceptual 
interfaces. Section 3 explains the validation process and lists the requirements on the entropy 
source, data collection, documentation, etc. Section 4 describes the health tests. Section 5 includes 
various statistical tests to check whether or not the entropy source outputs are IID (independent 
and identically distributed). Section 6 provides several methods to estimate the entropy of the noise 
source. The appendices include a list of acronyms, a glossary, references, a discussion on min-
entropy and the optimum-guessing-attack cost, information about the narrowest internal width, 
Cipher Block Chaining – Message Authentication Code (CBC-MAC) specification, and the 
underlying information on different entropy estimation strategies used in this Recommendation.  

1.3 Symbols 

The following symbols and functions are used in this Recommendation. 

A={x1,x2,…,xk} 
The alphabet, i.e., the set of all possible symbols that a (digitized) noise 
source produces.  

H 
The min-entropy of the samples from a (digitized) noise source or of the 
output from an entropy source; the min-entropy assessment for a noise 
source or entropy source. 

HI Initial entropy estimate. 

Horiginal Entropy estimate of the sequential dataset 

Hsubmiter The entropy estimate provided by the submitter. 

L The number of samples. 

logb(x) The logarithm of x with respect to base b. 

ln(x) The natural logarithm. 

min(a, b) A function that returns the minimum of the two values a and b. 

max(a, b) A function that returns the maximum of the two values a and b. 

M[i][j] The jth sample from the ith restart of the noise source. 

n The length of xi in bits. 

nw Narrowest width of the conditioning component 
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k The number of possible symbols, i.e., the size of the alphabet.  

α The probability of falsely rejecting the null hypothesis (type I error). 

|a| A function that returns the absolute value of a. 

pi The probability for an observation (or occurrence) of the symbol xi in A. 

pmax 
The probability of observing the most common symbol from a noise 
source. 

S=(s1,…,sL) A dataset that consists of an ordered collection of L samples, where si ϵ A. 

xi A possible output from the (digitized) noise source. 

[a, b] The interval of numbers between a and b, including a and b. 

 x A function that returns the smallest integer greater than or equal to x; also 
known as the ceiling function. 

 x A function that returns the largest integer less than or equal to x; also 
known as the floor function. 

|| Concatenation. 

⊕ Bit-wise exclusive-or operation. 
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2 General Discussion 

The three main components of a cryptographic RBG are a source of random bits (an entropy 
source), an algorithm for accumulating and providing random bits to the consuming applications, 
and a way to combine the first two components appropriately for cryptographic applications. This 
Recommendation describes how to design and test entropy sources. SP 800-90A describes 
deterministic algorithms that take an entropy input and use it to produce pseudorandom values. SP 
800-90C provides the “glue” for putting the entropy source together with the algorithm to 
implement an RBG. 

Specifying an entropy source is a complicated matter. This is partly due to confusion in the 
meaning of entropy, and partly due to the fact that, while other parts of an RBG design are strictly 
algorithmic, entropy sources depend on physical processes that may vary from one instance of a 
source to another. This section discusses, in detail, both the entropy source model and the meaning 
of entropy. 

2.1 Min-Entropy 

The central mathematical concept underlying this Recommendation is entropy. Entropy is defined 
relative to one’s knowledge of an experiment’s output prior to observation, and reflects the 
uncertainty associated with predicting its value – the larger the amount of entropy, the greater the 
uncertainty in predicting the value of an observation. There are many possible measures for 
entropy; this Recommendation uses a very conservative measure known as min-entropy, which 
measures the effectiveness of the strategy of guessing the most likely output of the entropy source. 
(see Appendix D and [Cac97] for more information). 

In cryptography, the unpredictability of secret values (such as cryptographic keys) is essential. The 
probability that a secret is guessed correctly in the first trial is related to the min-entropy of the 
distribution that the secret was generated from.  

The min-entropy of an independent discrete random variable X that takes values from the set 
A={x1,x2,…,xk} with probability Pr(X=xi) = pi for i =1,…,k is defined as 

𝐻𝐻  = min
1≤𝑖𝑖≤𝑘𝑘

(−log2 𝑝𝑝𝑖𝑖), 

= − log2 max
1≤𝑖𝑖≤𝑘𝑘

𝑝𝑝𝑖𝑖. 

If X has min-entropy H, then the probability of observing any particular value for X is no greater 
than 2 −H. The maximum possible value for the min-entropy of a random variable with k distinct 
values is log2 k, which is attained when the random variable has a uniform probability distribution, 
i.e., p1 = p2 =…= pk =1/k.  
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2.2 The Entropy Source Model 

This section describes the entropy source model in detail. Figure 1 illustrates the model that this 
Recommendation uses to describe an entropy source and its components, which consist of a noise 
source, an optional conditioning component and a health testing component.  

 

Figure 1 Entropy Source Model 

2.2.1 Noise Source 

The noise source is the root of security for the entropy source and for the RBG as a whole. This is 
the component that contains the non-deterministic, entropy-providing process that is ultimately 
responsible for the uncertainty associated with the bitstrings output by the entropy source. 

If the non-deterministic activity being sampled produces something other than binary data, the 
sampling process includes a digitization process that converts the output samples to bits. The 
output of the digitized noise source is called the raw data.  

This Recommendation assumes that the sample values (i.e., the symbols) obtained from a noise 
source consist of fixed-length bitstrings. 

Noise sources can be divided into two categories: Physical noise sources use dedicated hardware 
to generate randomness; whereas Non-physical noise sources use system data (such as output of 
Application Programming Interface (API) functions, Random Access Memory (RAM) data or 
system time) or human input (e.g., mouse movements) to generate randomness. 
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If the noise source fails to generate random outputs, no other component in the RBG can 
compensate for the lack of entropy; hence, no security guarantees can be made for the application 
relying on the RBG. 

2.2.2 Conditioning Component  

The optional conditioning component is a deterministic function responsible for reducing bias 
and/or increasing the entropy rate of the resulting output bits (if necessary to obtain a target value). 
There are various methods for achieving this. The developer should consider how the conditioning 
component to be used and how variations in the behavior of the noise source may affect the entropy 
rate of the output. In choosing an approach to implement, the developer may either choose to 
implement a cryptographic algorithm listed in Section 3.1.5.1.1 or use an alternative algorithm as 
a conditioning component. The use of either of these approaches is permitted by this 
Recommendation.  

2.2.3 Health Tests 

Health tests are an integral part of the entropy source design that are intended to ensure that the 
noise source and the entire entropy source continue to operate as expected. When testing the 
entropy source, the end goal is to obtain assurance that failures of the entropy source are caught 
quickly and with a high probability. Another aspect of health testing strategy is determining the 
likely failure modes for the entropy source and, in particular, for the noise source. Health tests are 
expected to include tests that can detect these failure conditions.  

The health tests can be separated into three categories: start-up tests, continuous tests (primarily 
on the noise source), and on-demand tests (See Section 4 for more information). 

2.3 Conceptual Interfaces 

This section describes three conceptual interfaces that can be used to interact with the entropy 
source: GetEntropy, GetNoise and HealthTest. However, it is anticipated that the actual 
interfaces used may depend on the entropy source employed.  

These interfaces can be used when constructing an RBG as specified in SP 800-90C. 

2.3.1 GetEntropy: An Interface to the Entropy Source 

The GetEntropy interface can be considered to be a command interface into the outer entropy 
source box in Figure 1. This interface is meant to indicate the types of requests for services that an 
entropy source may support.  

A GetEntropy call could return a bitstring containing the requested amount of entropy, along 
with an indication of the status of the request. Optionally, an assessment of the entropy can be 
provided. Note that the length of the returned bitstring may be greater than the amount of entropy 
requested.  
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GetEntropy 
Input: 
bits_of_entropy: the requested amount of entropy 
Output: 
entropy_bitstring: The string that provides the requested entropy. 
status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise. 

 

2.3.2 GetNoise: An Interface to the Noise Source 

The GetNoise interface can be considered to be a command interface into the noise source 
component of an entropy source. This could be used to obtain raw, digitized outputs from the noise 
source for use in validation testing or for external health (i.e., testing performed external to the 
entropy source). While it is not required to be in this form, it is expected that an interface be 
available that allows noise source data to be obtained without harm to the entropy source. This 
interface is meant to provide test data to credit a noise source with an entropy estimate during 
validation or for external health testing. It is permitted that such an interface be available only in 
“test mode” and that it is disabled when the source is operational.  

This interface is not intended to constrain real-world implementations, but to provide a consistent 
notation to describe the data collection from noise sources.  

A GetNoise call returns raw, digitized samples from the noise source, along with an indication of 
the status of the request. 

GetNoise 
Input: 
number_of_samples_requested: An integer value that indicates the requested number of samples 
to be returned from the noise source. 
Output: 
noise_source_data: The sequence of samples from the noise source with a length of 
number_of_samples_requested. 
status: A Boolean value that is TRUE if the request has been satisfied, and is FALSE otherwise. 

2.3.3 HealthTest: An Interface to the Entropy Source 

A HealthTest call is a request to the entropy source to conduct a test of its health. Note that it may 
not be necessary to include a separate HealthTest interface if the execution of the tests can be 
initiated in another manner that is acceptable to FIPS 140 [FIPS140] validation.  
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HealthTest 
Input: 
type_of_test_requested: A bitstring that indicates the type or suite of tests to be performed (this 
may vary from one entropy source to another). 
Output: 
status: A Boolean value that is TRUE if the entropy source passed the requested test, and is 
FALSE otherwise. 
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3 Entropy Source Validation 

Entropy source validation is necessary in order to obtain assurance that all relevant requirements 
of this Recommendation are met. This Recommendation provides requirements for validating an 
entropy source at a stated entropy rate. Validation consists of testing by an NVLAP-accredited 
laboratory against the requirements of SP 800-90B, followed by a review of the results by CAVP 
and CMVP. Validation provides additional assurance that adequate entropy is provided by the 
source and may be necessary to satisfy some legal restrictions, policies, and/or directives of various 
organizations. 

The validation of an entropy source presents many challenges. No other part of an RBG is so 
dependent on the technological and environmental details of an implementation. At the same time, 
the proper operation of the entropy source is essential to the security of an RBG. The developer 
should make every effort to design an entropy source that can be shown to serve as a consistent 
source of entropy, producing bitstrings that can provide entropy at a rate that meets (or exceeds) a 
specified value. In order to design an entropy source that provides an adequate amount of entropy 
per output bitstring, the developer must be able to accurately estimate the amount of entropy that 
can be provided by sampling its (digitized) noise source. The developer must also understand the 
behavior of the other components included in the entropy source, since the interactions between 
the various components may affect any assessment of the entropy that can be provided by an 
implementation of the design. For example, if it is known that the raw noise-source output is 
biased, appropriate conditioning components can be included in the design to reduce the bias of 
the entropy source output to a tolerable level before any bits are output from the entropy source.  

3.1 Validation Process 

An entropy source may be submitted to an accredited lab for validation testing by the developer or 
any entity with an interest in having an entropy source validated. After the entropy source is 
submitted for validation, the lab will examine all documentation and theoretical justifications 
submitted. The lab will evaluate these claims, and may ask for more evidence or clarification.  

The general flow of entropy source validation testing is summarized in Figure 2. The following 
sections describe the details of the validation testing process. 

3.1.1 Data Collection 

The submitter provides the following inputs for entropy estimation, according to the requirements 
presented in Section 3.2.4. 

 



NIST SP 800-90B   RECOMMENDATION FOR THE ENTROPY SOURCES  
  USED FOR RANDOM BIT GENERATION 

 10 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B 

 

  

  

Estimate entropy - Non-IID 
track (Section 6.2) 

Validation fails. No 
entropy estimate awarded. 

Update entropy estimate 
(Section 3.1.4) 

Is conditioning used? 

Update entropy estimate 
(Section 3.1.5) 

Estimate entropy - IID track 
(Section 6.1) 

Apply Restart Tests 
(Section 3.1.4) 

Pass restart tests? 

Data collection 
(Section 3.1.1) 

 Determine the track 
(Section 3.1.2)  

Start validation 

Validation at entropy 
estimate. 

Non-IID track 

Yes 

IID track 

No 

Yes 

No 

Figure 2 Entropy Estimation Strategy 
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1. A sequential dataset of at least 1 000 000 sample values obtained directly from the noise source 
(i.e., raw data) shall be collected for validation 2. If the generation of 1 000 000 consecutive 
samples is not possible, the concatenation of several smaller sets of consecutive samples 
(generated using the same noise source) is allowed. Smaller sets shall contain at least 1000 
samples. The concatenated dataset shall contain at least 1 000 000 samples.  

2. If the entropy source includes a conditioning component that is not listed in Section 3.1.5.1.1, 
a conditioned sequential dataset of at least 1 000 000 consecutive conditioning component 
outputs shall be collected for validation. The output of the conditioning component shall be 
concatenated in the order in which it was generated and treated as a binary string for testing 
purposes. Note that the data collected from the noise source for validation may be used as input 
to the conditioning component for the collection of conditioned output values. 

3. For the restart tests (see Section 3.1.4), the entropy source must be restarted 1000 times; for 
each restart, 1000 consecutive samples shall be collected directly from the noise source. The 
restart data shall be extracted whenever the noise source is ready and able to provide data that 
can be used for producing entropy source output. This data is stored in a 1000×1000 restart 
matrix M, where M[i][j] represents the jth sample from the ith restart. 
 

3.1.2 Determining the track: IID track vs. non-IID track 

In this Recommendation, entropy estimation is done using two different tracks: an IID-track and a 
non-IID track. The IID-track (see Section 6.1) is used for entropy sources that generate IID 
(independent and identically distributed) samples, whereas the non-IID track (see Section 6.2) is 
used for noise sources that do not generate IID samples.  

The track selection is done based on the following rules. The IID track shall be used only when 
all of the following conditions are satisfied: 

1. The submitter makes an IID claim on the noise source, based on the submitter’s analysis 
of the design. The submitter shall provide rationale for the IID claim.  

2. The sequential dataset described in item 1 of Section 3.1.1 is tested using the statistical 
tests described in Section 5 to verify the IID assumption, and the IID assumption is verified 
(i.e., there is no evidence that the data is not IID).  

3. The row and column datasets described in item 3 of Section 3.1.1 are tested using the 
statistical tests described in Section 5 to verify the IID assumption, and the IID assumption 
is verified. 

                                                 

2 Providing additional data beyond what is required will result in more accurate entropy estimates. Lack of sufficient data 
may result in lower entropy estimates due to the necessity of mapping down the output values (see Section 6.4).  It is 
recommended that, if possible, more data than is required be collected for validation. However, it is assumed in subsequent 
text that only the required data has been collected. 

jhill
Sticky Note
The estimators produce a distribution of results for a given entropy source. It would be a good idea to run each estimator several times and take the median as the result.



NIST SP 800-90B   RECOMMENDATION FOR THE ENTROPY SOURCES  
  USED FOR RANDOM BIT GENERATION 

 12 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B 

 

4. If a conditioning component that is not listed in Section 3.1.5.1.1 is used, the conditioned 
sequential dataset  (described in item 2 of Section 3.1.1) is tested using the statistical tests 
described in Section 5 to verify the IID assumption, and the IID assumption is verified. 

If any of these conditions are not met, the estimation process shall follow the non-IID track. 

3.1.3 Initial Entropy Estimate 

The submitter shall provide an entropy estimate for the noise source outputs, which is based on 
the submitter’s analysis of the noise source (see Requirement 3 in Section 3.2.2). This estimate is 
denoted as Hsubmitter. 

After determining the entropy estimation track, a min-entropy estimate per sample, denoted as 
Horiginal, for the sequential dataset is calculated using the methods described in Section 6.1 (for the 
IID track) or Section 6.2 (for the non-IID track). If the alphabet size is greater than 256, it shall be 
reduced to at most 256 symbols (see Section 6.4).  

If the sequential dataset is not binary, an additional entropy estimation (per bit), denoted Hbitstring, 
is estimated. First, the sequential dataset that contains L samples (each having n bits) is considered 
as a bitstring of size nL.  The bits after the first 1 000 000 bits may be ignored. Then, the estimation 
is done based on the entropy estimation track, as specified in the previous paragraph, and Hbitstring 
is calculated. Then, the entropy per sample is estimated to be n×Hbitstring.  

The initial entropy estimate of the noise source is calculated as HI = min (Horiginal, n×Hbitstring, 
Hsubmitter) for non-binary sources and as HI = min (Horiginal, Hsubmitter) for binary sources. 

3.1.4 Restart Tests 

The entropy estimate of a noise source, calculated from a single, long-output sequence, might 
provide an overestimate if the noise source generates correlated sequences after restarts. Hence, 
an attacker with access to multiple noise source output sequences after restarts may be able to 
predict the next output sequence with much better success than the entropy estimate suggests. 

The process of restarting a noise source may be different for different noise sources (e.g., powering 
off, cooling off, delaying ten seconds before extracting output from the noise source, etc.). The 
submitter shall define the restart process suitable for the submission. This process shall simulate 
the restart process expected in real-world use (e.g., the outputs are not generated until after the 
start-up tests are complete; see Section 4.2). All restarts are expected to be done in normal 
operating conditions. 

The restart tests described in this section re-evaluate the entropy estimate for the noise source using 
different outputs from many restarts of the noise source. These tests are designed to ensure that:  

- The noise source outputs generated after a restart are drawn from the same distribution as 
every other output. 

- The distribution of samples in a restart sequence is independent of its position in the restart 
sequence.  

jhill
Highlight

jhill
Highlight
H_{submitter} is incredibly important, as many sources do not assess conservatively when using only statistical assessment (e.g., in one particular RO implementation, only 30% of the observed standard deviation is expected to come from local Gaussian noise; the rest is basically predictable by a suitably informed attacker). This also provides the vendor with the ability to decrease the end assessed entropy (which is useful to increase the chance that the restart sanity test will pass, and to make the various health checks less likely to fail).


jhill
Sticky Note
This document does not specify how to accomplish this task, so this procedure is not completely specified. How are the symbols to be arranged, and how is each symbol to be encoded?

For example, if we just concatenate the symbols together, we still need to know how the symbols should be encoded: most significant bit to least significant bit (big endian), least significant bit to most significant bit (little endian), or some other encoding?
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- The knowledge of other restart sequences does not offer additional advantage in predicting 
the next restart sequence. 

3.1.4.1 Constructing Restart Data 

To construct restart data, the entropy source shall be restarted r = 1000 times; for each restart, c = 
1000 consecutive samples shall be collected directly from the noise source. The collection of the 
data shall be done as soon as the entropy source is ready to produce outputs for real-world use 
(e.g., after start-up tests). Note that an entropy source, in its real-world use and during restart 
testing, may inhibit outputs for a time immediately after restarting in order to allow any transient 
weak behavior to pass. The output samples are stored in an r by c matrix M, where M[i][j] 
represents the jth sample from the ith restart.  

Two datasets are constructed using the matrix M:  

- The row dataset is constructed by concatenating the rows of the matrix M, i.e., the row 
dataset is M[1][1] ||…|| M[1][c] || M[2][1] ||…|| M[2][c] || … || M[r][1] ||…|| M[r][c].  

- The column dataset is constructed by concatenating the columns of the matrix M, i.e., the 
column dataset is M[1][1] ||…|| M[r][1] || M[1][2] ||…|| M[r][2] || …|| M[1][c] ||…|| M[r][c]. 

3.1.4.2 Validation Testing 

The restart tests check the relations between noise source samples generated after restarting the 
entropy source, and compare the results to the initial entropy estimate, HI (see Section 3.1.3).  

First, the sanity check described in Section 3.1.4.3 is performed on the matrix M. If the test fails, 
the validation fails and no entropy estimate is awarded.  
If the noise source does not fail the sanity check, then the entropy estimation methods described 
in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track) are performed on the row 
and the column datasets, based on the track of the entropy source. Let Hr and Hc be the resulting 
entropy estimates of the row and the column datasets, respectively. The entropy estimates from 
the row and the column datasets are expected to be close to the initial entropy estimate HI. If the 
minimum of Hr and Hc is less than half of HI, the validation fails, and no entropy estimate is 
awarded. Otherwise, the entropy assessment of the noise source is taken as the minimum of the 
row, the column and the initial estimates, i.e., min(Hr, Hc, HI). 
If the noise source does not fail the restart tests, and the entropy source does not include a 
conditioning component, the entropy source will be validated at H=min(Hr, Hc, HI). If the entropy 
source includes a conditioning component, the entropy assessment of the entropy source is updated 
as described in Section 3.1.5. 

3.1.4.3 Sanity Check - Most Common Value in the Rows and Columns 

This test checks the frequency of the most common value in the rows and the columns of the matrix 
M. If this frequency is significantly greater than the expected value, given the initial entropy 
estimate HI calculated in Section 3.1.3, the restart test fails. In this case, the validation fails no 
entropy estimate is awarded. 

jhill
Highlight
As M is described as matrix elsewhere, you may want to mention that the "column dataset" is just applying the rule for ordering the row dataset, but using the transpose of M.

jhill
Sticky Note
Note that this has a test construction issue. Use the simulation based approach described in our comments.
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This sanity check is based on a binomial test, where there are two possible outcomes for each trial: 
the most frequent value or any other value is observed. The purpose of the test is to determine 
whether the most frequent value appears more than would be expected, given the initial entropy 
estimate, HI. The probability of type I error, denoted α, is set at 0.01 over the entire sanity check, 
where each of the 2000 binomial experiments3 has type I error probability of 0.000 005. 

Only the experiment yielding the highest count is tested. If that experiment passes the test, then 
the other 1999 experiments will pass as well. If any of the 2000 experiments were to fail, one of 
the failed experiments would be the experiment having the highest count. Therefore, it is sufficient 
to test the experiment with the highest count. 

Given the 1000 by 1000 restart matrix and the initial entropy estimate HI, the test is performed as 
follows: 

1. Let p = 2−𝐻𝐻𝐼𝐼. Let α be 0.000 005.  
2. For each row (1≤ i ≤ 1000) of the matrix, count the number of occurrences of each sample 

present in the row. Set XRi to the highest count value for row i. Let XR be the maximum count 
value for all the rows, i.e., XR = max (XR1,…, XR1000).   

3. For each column (1≤ i ≤ 1000) of the matrix, count the number of occurrences of each sample 
present in the column. Set XCi to the highest count value for column i. Let XC be the maximum 
count value for all the columns, i.e., XC = max (XC1,…, XC1000).  

4. Let 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = max(𝑋𝑋𝑐𝑐,𝑋𝑋𝑅𝑅).  

5. Calculate P(𝑋𝑋 ≥ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) = ∑ �1000𝑗𝑗 � 𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)1000−𝑗𝑗1000
𝑗𝑗=𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 . If Pr(𝑋𝑋 ≥ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  < 𝛼𝛼,  the test 

fails. Otherwise, the test passes. 

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component 

The optional conditioning component gets inputs from the noise source and generates the output 
of the entropy source. The size of the input and the output of the conditioning component in bits, 
denoted as nin and nout, respectively, shall be fixed and shall be specified by the submitter. Noise 
source outputs are concatenated to construct nin-bit input to the conditioning function. The entropy 
of the input, denoted hin, depends on the number of samples needed to construct the nin-bit input. 
If w samples are needed, then hin is estimated to be w×h bits. The size of the conditioning 
component input shall be a multiple of the size of the noise source output.  

Since the conditioning component is deterministic, the entropy of the output is at most hin. 
However, the conditioning component may reduce the entropy of the output. The entropy of the 
output from the conditioning component is denoted as hout, i.e., hout bits of entropy are contained 
within the nout-bit output. The entropy of the output also depends on the internals of the 
conditioning components. In this Recommendation, the narrowest internal width within the 

                                                 

3 The experiments done for each row or column are considered to be independent.  

jhill
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This is not what is being calculated here. This is the p-value for a single test; there are 2,000 such tests (which is why the test requires that you compare with alpha = 0.000005 rather than alpha = 0.01).
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conditioning component is denoted as nw.  A discussion on the narrowest internal width is given 
in Appendix E.  

 

Figure 3 Entropy of the Conditioning Component 

The optional conditioning component can be designed in various ways. Section 3.1.5.1.1 provides 
a list of vetted cryptographic algorithms/functions for conditioning the noise source outputs. 
Submitters are allowed to use other conditioning components. If a conditioning component from 
Section 3.1.5.1.1 is used, the entropy estimation is performed as described in Section 3.1.5.1.2; if 
a non-listed algorithm is used, the entropy estimation is performed as described in Section 3.1.5.2. 

3.1.5.1 Using Vetted Conditioning Components   

Both keyed and unkeyed algorithms have been vetted for conditioning. Section 3.1.5.1.1  provides 
a list of vetted conditioning components. Section 3.1.5.1.2 discusses the method for determining 
the entropy provided by a vetted conditioning component. 

3.1.5.1.1 List of Vetted Conditioning Components 

Three keyed algorithms have been vetted for a keyed conditioning component: 

1. HMAC, as specified in FIPS 198, with any approved hash function specified in FIPS 180 
or FIPS 202, 

2. CMAC, as specified in SP 800-38B, with the AES block cipher (see FIPS 197), and 
3. CBC-MAC, as specified in Appendix F, with the AES block cipher. This Recommendation 

does not approve the use of CBC-MAC for purposes other than as a conditioning 
component in an RBG. 

Three unkeyed functions have been vetted for an unkeyed conditioning component: 

1. Any approved hash function specified in FIPS 180 or FIPS 202, 
2. Hash_df, as specified in SP 800-90A, using any approved hash function specified in FIPS 

180 or FIPS 202, and 
3. Block_Cipher_df, as specified in SP800-90A using the AES block cipher (see FIPS 197). 

 
The narrowest internal width and the output length for the vetted conditioning functions are 
provided in the following table. 

Noise 
Source 

nout bits with  
hout bits of entropy Conditioning 

Component nw Output 

nin bits with  
hin bits of entropy 

jhill
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Most uses of n_{in} should instead be the number of inputs from the raw entropy source multiplied by ceil(log_2(k)) (the minimal number of bits that could be used to encode each raw sample).
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Table 1 The narrowest internal width and output lengths of the vetted conditioning 
functions.  

Conditioning Function Narrowest Internal Width 
(nw) 

Output Length 
(nout) 

HMAC hash-function output size hash-function output size 

CMAC AES block size = 128 AES block size = 128 

CBC-MAC AES block size = 128 AES block size = 128 

Hash Function hash-function output size hash-function output size 

Hash_df hash-function output size hash-function output size 

Block_Cipher_df AES key size  AES key size 

 
For Hash_df and Block_cipher_df, the output length indicated in the table is used as the 
no_of_bits_to_return input parameter for the invocation of Hash_df and Block_Cipher_df (see SP 
800-90A). 
 

3.1.5.1.2 Entropy Assessment using Vetted Conditioning Components 

When using a conditioning component listed in Section 3.1.5.1.1 (given the assurance of correct 
implementation by CAVP testing), the entropy of the output is estimated as  

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  Output_Entropy(𝑛𝑛𝑖𝑖𝑖𝑖,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑛𝑛,ℎ𝑖𝑖𝑖𝑖) 

where Output_Entropy(𝑛𝑛𝑖𝑖𝑖𝑖,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑛𝑛,ℎ𝑖𝑖𝑖𝑖) is described as follows4: 

1. Let 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ = 2−ℎ𝑖𝑖𝑖𝑖 and  𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 =  (1−𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ)
2𝑛𝑛𝑖𝑖𝑖𝑖−1

 . 
2. 𝑛𝑛 = min(𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛). 
3. 𝜓𝜓 =  2𝑛𝑛𝑖𝑖𝑖𝑖−𝑛𝑛𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ 
4. U = 2𝑛𝑛𝑖𝑖𝑖𝑖−𝑛𝑛 + �2 𝑛𝑛(2𝑛𝑛𝑖𝑖𝑖𝑖−𝑛𝑛 ) ln(2)   
5. 𝜔𝜔 = 𝑈𝑈 ×𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 
6. Return − log2(max(𝜓𝜓,𝜔𝜔))  
 

The entropy source will be assessed at the min-entropy per conditioned output, hout, computed 
above. Vetted conditioning components are permitted to claim full entropy outputs. 

                                                 

4 The formula used to generate Output_Entropy() is adapted from the formula 𝑘𝑘𝛼𝛼 =  𝑚𝑚
𝑛𝑛

+ 𝛼𝛼�2𝑚𝑚
𝑛𝑛

ln 𝑛𝑛 provided in Theorem 1 of 

[RaSt98], such that m is equal to  2𝑛𝑛𝑖𝑖𝑖𝑖, n is equal to 2𝑛𝑛 and 𝛼𝛼 is equal to 1.  

jhill
Sticky Note
This assumes an underlying almost uniform distribution (as per Haggerty-Draper). The selected formula is supposed to apply when nlogn << m <= n polylog(n). Here, we have alpha=1, 2^n bins, and 2^{n_{in}} balls.

jhill
Sticky Note
This never allows h_out to equal n_out, so one can only get arbitrarily close. It's unclear what "full entropy" means presently.

jhill
Sticky Note
n_in should also be included, so n=min(n_out, nw, n_in). (This is consistent with the definition of the narrowest width in Appendix E).
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Note that it is acceptable to truncate the outputs from a vetted conditioning component. If this is 
done, the entropy estimate is reduced to a proportion of the output (e.g., if there are six bits of 
entropy in an eight-bit output and the output is truncated to six bits, then the entropy is reduced to 
3/4 x 6 = 4.5 bits). 

When additional noise sources are available, the length of the input (𝑛𝑛𝑖𝑖𝑖𝑖) shall only include the 
inputs from the primary noise source.  

3.1.5.2 Using Non-vetted Conditioning Components 

For non-vetted conditioning components, the entropy in the output depends on the entropy and 
size of the input (hin and nin), the size of the output (nout), and the size of the narrowest internal 
width (nw) and the entropy of the conditioned sequential dataset (as described in item 2 of Section 
3.1.1), which shall be computed using the methods described in either Section 6.1 (for IID data) 
or Section 6.2 (for non-IID data). Let the obtained entropy estimate per bit be h'.  

The output of the conditioning component (nout) shall be treated as a binary string, for purposes of 
the entropy estimation. 

The entropy of the conditioned output is estimated as  

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = min(Output_Entropy(𝑛𝑛𝑖𝑖𝑖𝑖,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛,ℎ𝑖𝑖𝑖𝑖), 0.999n𝑜𝑜𝑜𝑜𝑜𝑜,ℎ′×𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜). 

The description of Output_Entropy is given in Section 3.1.5.1.2. To avoid approving an entropy 
source having a non-vetted conditioning component with full entropy, 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 is multiplied by the 
constant 0.999. The entropy source will be validated at the min-entropy per conditioned output, 
hout, computed above.  

Note that truncating subsequent to the use of a non-vetted conditioning component shall not be 
performed before providing output from the entropy source.  

3.1.6 Additional Noise Sources 

In this Recommendation, it is assumed that the entropy sources have a unique primary noise source 
that is responsible to generate randomness. It should be noted that multiple copies of the same 
physical noise source are considered as a single noise source (e.g., a source with eight ring 
oscillators, where the sampled bits are concatenated to get an eight-bit output, or where the samples 
bits are XORed together). 

In addition to the primary noise source outputs, outputs of other noise sources may be available to 
the entropy source, and their outputs may be used to increase security. However, the joint entropy 
of these outputs may be hard to estimate, especially when there are dependencies between the 
sources (e.g., packet arrival times in a communication network and hard drive access times). 

This Recommendation allows one to concatenate the outputs of the additional noise sources to the 
primary noise source to generate input to the conditioning component. In such cases, vetted 
conditioning components shall be used. No entropy is credited from the outputs of the additional 
noise sources.  

jhill
Highlight
This is a real problem for at least ring oscillators. Only raw RO outputs should be assessed (sans XOR!)
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3.2 Requirements for Validation Testing  

In this section, high-level requirements (on both submitters and testers) are presented for validation 
testing.  

3.2.1 Requirements on the Entropy Source  

The intent of these requirements is to assist the developer in designing/implementing an entropy 
source that can provide outputs with a consistent amount of entropy and to produce the required 
documentation for entropy source validation. 

1. The entire design of the entropy source shall be documented, including the interaction of 
the components specified in Section 2.2. The documentation shall justify why the entropy 
source can be relied upon to produce bits with entropy. 

2. Documentation shall describe the operation of the entropy source, including how the 
entropy source works, and how to obtain data from within the entropy source for validation 
testing.  

3. Documentation shall describe the range of operating conditions (e.g., temperature range, 
voltages, system activity, etc.) under which the entropy source is claimed to operate 
correctly. The entropy source outputs are expected to have similar entropy rates in this 
specified range of operating conditions. 

4. The entropy source shall have a well-defined (conceptual) security boundary. This security 
boundary shall be documented; the documentation shall include a description of the 
content of the security boundary.  

5. When a conditioning component is not used, the output from the entropy source is the 
output of the noise source, and no additional interface is required. In this case, the noise-
source output is available during both validation testing and normal operation.   
When a conditioning component is included in the entropy source, the output from the 
entropy source is the output of the conditioning component, and an additional interface is 
required to access the noise-source output. In this case, the noise-source output shall be 
accessible via the interface during validation testing, but the interface may be disabled 
otherwise. The designer shall fully document the method used to get access to the raw 
noise source samples. If the noise-source interface is not disabled during normal operation, 
any noise-source output using this interface shall not be provided to the conditioning 
component for processing and eventual output as normal entropy-source output. 

6. The entropy source may restrict access to raw noise source samples to special 
circumstances that are not available to users in the field, and the documentation shall 
explain why this restriction is not expected to substantially alter the behavior of the entropy 
source as tested during validation. 

7. Documentation shall contain a description of the restarting process applied during the 
restart tests. 

 

3.2.2 Requirements on the Noise Source 

The entropy source will have no more entropy than that provided by the noise source, and as such, 
the noise source requires special attention during validation testing. This is partly due to the 
fundamental importance of the noise source (if it does not do its job, the entropy source will not 

jhill
Highlight
This is unrealistic; the only practical way of doing this would be to condition the data to the extent that it is expected to be full entropy at all conditions. This should allow a bound to be claimed and supported.



NIST SP 800-90B   RECOMMENDATION FOR THE ENTROPY SOURCES  
  USED FOR RANDOM BIT GENERATION 

 19 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B 

 

provide the expected amount of security), and partly because the probabilistic nature of its behavior 
requires more complicated testing. 

The requirements for the noise source are as follows: 

1. The operation of the noise source shall be documented; this documentation shall include a 
description of how the noise source works, where the unpredictability comes from, and 
rationale for why the noise source provides acceptable entropy output, and should reference 
relevant, existing research and literature.  

2. The behavior of the noise source shall be stationary (i.e., the probability distributions of the 
noise source outputs do not change when shifted in time). Documentation shall include why it 
is believed that the entropy rate does not change significantly during normal operation. This 
can be in broad terms of where the unpredictability comes from and a rough description of the 
behavior of the noise source (to show that it is reasonable to assume that the behavior is 
stationary). 

3. Documentation shall provide an explicit statement of the expected entropy provided by the 
noise source outputs and provide a technical argument for why the noise source can support 
that entropy rate. To support this, documentation may include a stochastic model of the noise 
source outputs, and an entropy estimation based on this stochastic model may be included.  

4. The noise source state shall be protected from adversarial knowledge or influence to the 
greatest extent possible. The methods used for this shall be documented, including a 
description of the (conceptual) security boundary’s role in protecting the noise source from 
adversarial observation or influence. 

5. Although the noise source is not required to produce unbiased and independent outputs, it shall 
exhibit random behavior; i.e., the output shall not be definable by any known algorithmic rule. 
Documentation shall indicate whether the noise source produces IID data or non-IID data. This 
claim will be used in determining the test path followed during validation. If the submitter 
makes an IID claim, documentation shall include rationale for the claim. 

6. The noise source shall generate fixed-length bitstrings. A description of the output space of 
the noise source shall be provided. Documentation shall specify the fixed symbol size (in bits) 
and the list (or range) of all possible outputs from each noise source. 

7. If additional noise source outputs to increase security are used, a document that describes the 
additional noise sources shall be included.  

3.2.3 Requirements on the Conditioning Component 

The requirements for the conditioning component are as follows: 

1. The submitter shall document which conditioning component is used and the details about its 
implementation (e.g., the hash function and/or key size used). Documentation shall include the 
input and the output sizes (nin and nout).  
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2. If the entropy source uses a vetted conditioning component as listed in Section 3.1.5.1.1, the 
implementation of the component shall be tested to obtain assurance of correctness before 
subsequent testing of the entropy source. The submitter shall specify any keys used to test the 
correctness of the conditioning component implementation during validation testing. If the 
testing fails, validation of the entropy source fails. The submitter may retest with the corrected 
implementation until the conditioning component passes the validation test.  

3. If the conditioning component uses cryptographic keys, the keys may be (1) fixed to a pre-
determined value, (2) set using some additional input to the device, or (3) generated by using 
the noise source outputs. The key shall be determined before any outputs are generated from 
the conditioning component.  

4. Any value which is used to determine the key shall not be used as any other input to the 
conditioning component. The input entropy to the conditioning component (hin) shall not 
include any entropy provided to the key of a keyed function.  

5. For entropy sources containing a conditioning component that is not listed in Section 3.1.5.1.1, 
a description of the conditioning component shall be provided. Documentation shall state the 
narrowest internal width and the size of the output blocks from the conditioning component. 
The submitter shall provide mathematical evidence that the component is suitable to be used 
to condition the noise source output, and does not significantly reduce the entropy rate of the 
entropy source output. The submitter shall also provide a justification about why the 
conditioning component does not act poorly when the noise source data is not independent. 

3.2.4 Requirements on Data Collection 

The requirements on data collection are listed below:  

1. The data collection for entropy estimation shall be performed in one of the three ways 
described below:  

• By the submitter with a witness from the testing lab, or  

• By the testing lab itself, or  

• Prepared by the submitter in advance of testing, along with the following documentation: 
a specification of the data generation process, and a signed document that attests that the 
specification was followed. 

2. Data collected from the noise source for validation testing shall be raw output values. 

3. The data collection process shall not require a detailed knowledge of the noise source or 
intrusive actions that may alter the behavior of the noise source (e.g., drilling into the device).  

4. Data shall be collected from the noise source and any conditioning component that is not listed 
in Section 3.1.5.1.1 (if used) under normal operating conditions.   

5. Data shall be collected from the entropy source under validation. Any relevant version of the 
hardware or software updates shall be associated with the data.  

6. Documentation of the data collection method shall be provided so that a lab or submitter can 
perform (or replicate) the collection process at a later time, if necessary. 
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7. Documentation explaining why the data collection method does not interfere with the noise
source shall be provided.
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4 Health Tests 

Health tests are an important component of the entropy source, as they aim to detect deviations 
from the intended behavior of the noise source as quickly as possible and with a high probability. 
Noise sources can be fragile, and hence, can be affected by changes in the operating conditions of 
the device, such as the temperature, humidity, or electric field, which might result in unexpected 
behavior. The health tests take the entropy assessment as input5, and characterize the expected 
behavior of the noise source based on this value. Requirements on the health tests are listed in 
Section 4.3. 

4.1 Health Test Overview 

The health testing of a noise source is likely to be very technology-specific. Since, in most cases, 
the noise source will not produce unbiased, independent binary data, traditional statistical 
procedures (e.g., the randomness tests described in NIST SP 800-22) that test the hypothesis of 
unbiased, independent bits will almost always fail, and thus are not useful for monitoring the noise 
source. In general, tests on the noise source need to be tailored carefully, taking into account the 
expected statistical behavior of the correctly operating noise source. 

The health testing of noise sources will typically be designed to detect failures of the noise source, 
based on the expected output during a failure, or to detect a deviation from the expected output 
during the correct operation of the noise source. Health tests are expected to raise an alarm in three 
cases:  
1. When there is a significant decrease in the entropy of the outputs,
2. When noise source failures occur, or
3. When hardware fails, and implementations do not work correctly.

4.2 Types of Health Tests

Health tests are applied to the outputs of a noise source before any conditioning is done. (It is 
permissible to also apply some health tests to conditioned outputs, but this is not required.)   

Start-up health tests are designed to be performed after powering up, or rebooting, and before the 
first use of the entropy source. They provide some assurance that the entropy source components 
are working as expected before they are used during normal operating conditions, and that nothing 
has failed since the last time that the start-up tests were run.6 The samples drawn from the noise 
source during the startup tests shall not be available for normal operations until the tests are 
completed; these samples may be discarded at any time, or may be used after the completion of 
the tests if there are no errors. 

5 The submitter may claim a low entropy estimate (as described in Section 3.1.3) to reduce the false positive rates. 

6 The specific conditions in which the startup tests must be run for FIPS-validated cryptographic modules are determined by the 
requirements of FIPS 140.  This document imposes no additional requirements for the use of start-up health testing. 
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Continuous health tests are run indefinitely on the outputs of the noise source7 while the noise 
source is operating. Continuous tests focus on the noise source behavior and aim to detect failures 
as the noise source produces outputs. The purpose of continuous tests is to allow the entropy source 
to detect many kinds of failures in its underlying noise source. These tests are run continuously on 
all digitized samples obtained from the noise source, and so tests must have a very low probability 
of raising a false alarm during the normal operation of the noise source. In many systems, a 
reasonable false positive probability will make it extremely unlikely that a properly functioning 
device will indicate a malfunction, even in a very long service life. Continuous tests are resource-
constrained − this limits their ability to detect noise source failures − so they are usually designed 
so that only gross failures are likely to be detected.  
Note that continuous health tests operate over a stream of values. These sample values may be 
output from the entropy source as they are generated and (optionally) processed by a conditioning 
component; there is no need to inhibit output from the noise source or entropy source while running 
the test. It is important to understand that this may result in poor entropy source outputs for a time, 
since the error is only signaled once significant evidence has been accumulated, and these values 
may have already been output by the entropy source. As a result, it is important that the false 
positive probability be set to an acceptable level. In the following discussion, all calculations 
assume that a false positive probability of approximately one error in 220 samples generated by the 
noise source is acceptable; however, the formulas given can be adapted for different false positive 
probabilities selected by the submitter. 
On-demand health tests can be called at any time. This Recommendation does not require 
performing testing during operation. However, it does require that the entropy source be capable 
of performing on-demand health tests of the noise source output. Note that resetting, rebooting, or 
powering up are acceptable methods for initiating an on-demand test if the procedure results in the 
immediate execution of the start-up tests.  Samples collected from the noise source during on-
demand health tests shall not be available for use until the tests are completed, however these 
samples may be discarded at any time, or may be used after the completion of the tests providing 
that there are no errors.  

4.3 Requirements for Health Tests 

Health tests on the noise source are a required component of an entropy source.  The health tests 
shall include both continuous and start-up tests. 
1. The continuous tests shall include either:

a. The approved continuous health tests, described in Section 4.4, or
b. Some developer-defined tests that meet the requirements for a substitution of those

approved tests, as described in Section 4.5. If developer-defined health tests are used in
place of any of the approved health tests, the tester shall verify that the implemented tests
detect the failure conditions detected by the approved continuous health tests, as described
in Section 4.4. The need to use the two approved continuous health tests can be avoided
by providing convincing evidence that the failure being considered will be reliably

7 Entropy sources may have a warm-up phase in which the outputs are inhibited for a time immediately after startup. Continuous 
health testing is not required during the warm up phase. 
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detected by the developer-defined continuous tests. This evidence may be a proof or the 
results of statistical simulations. 

c. The continuous tests may include additional tests defined by the developer.  
2. When the health tests fail, the entropy source shall notify the consuming application (e.g., the 

RBG) of the error condition. The developer may have defined different types of failures (e.g., 
intermittent and persistent), and the application is allowed to react differently to different types 
of failures (e.g., by inhibiting output for a short time). The developer is allowed to define 
different cutoff values to detect intermittent and persistent failures. If so, these values (with 
corresponding false alarm probabilities) shall be specified in the submission documentation.  
If the entropy source detects intermittent failures and allows the noise source to return to 
normal functioning, the designer shall provide evidence that: a) The intermittent failures 
handled in this way are indeed extremely likely to be intermittent failures; and b) the tests will 
detect a permanent failure when one occurs, and will ultimately signal an error condition to 
the consuming application and cease operation. In the case where a persistent failure is 
detected, the entropy source shall not produce any outputs. The module may support being 
reset or returned to operation by the consuming application or system.  (An example of a 
situation where this would make sense is a remote system whose cryptographic module cannot 
be replaced quickly, but which must continue functioning.) 

3. The optimal value for the false positive probability may depend on the rate that the entropy 
source produces its outputs. For the approved continuous health tests, the false positive 
probability8 is recommended to be between 2−20 and 2−40. Lower probability values are 
acceptable. The submitter shall specify and document a false positive probability suitable for 
their application. 

4. The entropy source's startup tests shall run the continuous health tests over at least 1024 
consecutive samples. The startup tests may include other tests defined by the developer. The 
samples subjected to startup testing may be released for operational use after the startup tests 
have been passed, or may be discarded at any time. 

5. The entropy source shall support on-demand testing. The on-demand tests shall include at 
least the same testing done by the start-up tests. The entropy source may support on-demand 
testing by restarting the entropy source and rerunning the startup tests, or by rerunning the 
startup tests without restarting the entropy source. The documentation shall specify the 
approach used for on-demand testing. The on-demand tests may include other tests defined by 
the developer, in addition to the testing done in the start-up tests. 

6. Health tests shall be performed on the noise source samples before any conditioning is done. 
Additional health tests may be performed on the outputs of the conditioning function.  

7. The submitter shall provide documentation that specifies all entropy source health tests and 
their rationale. The documentation shall include a description of the health tests, source code, 
the rate and conditions under which each health test is performed (e.g., at power-up, 

                                                 

8 Having a high false positive probability and discarding the outputs when the test raises an alarm may result in a reduction in the 
entropy of the outputs. For the recommended range, the loss can be considered negligible.  
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continuously, or on-demand), and include rationale indicating why each test is believed to be 
appropriate for detecting one or more failures in the noise source.  

8. The submitter shall provide documentation of any known or suspected noise source failure
modes (e.g., the noise source starts producing periodic outputs like 101…01), and shall
include developer-defined continuous tests to detect those failures. These should include
potential failure modes that might be caused by an attack on the device.

9. Appropriate health tests that are tailored to the noise source should place special emphasis on
the detection of misbehavior near the boundary between the nominal operating environment
and abnormal conditions. This requires a thorough understanding of the operation of the noise
source.

4.4 Approved Continuous Health Tests 

This recommendation provides two approved health tests: the Repetition Count test, and the 
Adaptive Proportion test.  If these two health tests are included among the continuous health tests 
of the entropy source, no other tests are required. However, the developer is advised to include 
additional continuous health tests tailored to the noise source. 
Both tests are designed to require minimal resources, and to be computed on-the-fly while noise 
source samples are being produced, possibly conditioned, and output by the entropy source.  
Neither test needs to delay the availability of the noise source samples.   

Like all statistical tests, both of these tests have a false positive probability – the probability that a 
correctly functioning noise source will fail the test on a given output.  In many applications, a 
reasonable choice for the probability of type I error is α = 2−20; this value will be used in all the 
calculations in the rest of this section. The developer of the entropy source shall determine a 
reasonable probability of type I error (and corresponding cutoff values), based the details of the 
entropy source and its consuming application.   

4.4.1 Repetition Count Test 

The goal of the Repetition Count Test is to quickly detect catastrophic failures that cause the noise 
source to become "stuck" on a single output value for a long period of time. It can be considered 
as an update of the "stuck test" that was previously required for random number generators within 
FIPS-approved cryptographic modules. Note that this test is intended to detect a total failure of the 
noise source. 
Given the assessed min-entropy H of a noise source, the probability9 of that source generating n 
identical samples consecutively is at most 2−H(n-1). The test declares an error if a sample is repeated 
C or more times. The cutoff value C is determined by the acceptable false-positive probability α 
and the entropy estimate H using the following formula 

9 This probability can be obtained as follows. Let a random variable take possible values with probabilities pi, for i=1,..,k, where 
p1≥p2≥…≥pk . Then, the probability of producing any C identical consecutive samples is ∑ piC. Since, ∑ piC is less than or equal to 
p1. p1C−1+ p2.p1C−1+…+ pk.p1C−1= (p1+…+pk) p1C−1 = p1C-1 = 2−H(C−1). 
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C = 1+ 



−

H
α log2 .  

This value of C is the smallest integer satisfying the inequality α ≥2−H (C−1), which ensures that the 
probability of obtaining a sequence of identical values from C consecutive noise source samples 
is at most α. For example, for α = 2−20, an entropy source with H = 2.0 bits per sample would have 
a repetition count test cutoff value of 1+20/2.0 = 11. 
Let next() yield the next sample from the noise source. Given a continuous sequence of noise 
source samples, and the cutoff value C, the repetition count test is performed as follows: 

1. A=next() 
2. B =1 
3. X=next() 
4. If (X = A),  

 B=B+1 
 If (B ≥ C), signal a failure. 

else: 
 A=X 
 B=1 

5. Repeat Step 3. 
 
This test's cutoff value can be applied to any entropy estimate, H, including very small and very 
large estimates. However, it is important to note that this test is not very powerful – it is able to 
detect only catastrophic failures of a noise source. For example, a noise source evaluated at eight 
bits of min-entropy per sample has a cutoff value of six repetitions to ensure a false-positive rate 
of approximately once per 1012 samples generated. If that noise source somehow failed to the point 
that each sample had a 1/16 probability of being the same as the previous sample, so that it was 
providing only four bits of min-entropy per sample, it would still be expected to take about one 
million samples before the repetition count test would notice the problem.   

4.4.2 Adaptive Proportion Test 

The Adaptive Proportion Test is designed to detect a large loss of entropy that might occur as a 
result of some physical failure or environmental change affecting the noise source. The test 
continuously measures the local frequency of occurrence of a sample value in a sequence of noise 
source samples to determine if the sample occurs too frequently. Thus, the test is able to detect 
when some value begins to occur much more frequently than expected, given the source's assessed 
entropy per sample. Note that this test is intended to detect more subtle failures of the noise source, 
rather than the kind of total failure detected by the Repetition Count Test. 
The test takes a sample from the noise source, and then counts the number of times that the same 
value occurs within the next W-1 samples. If that count reaches the cutoff value C, the test declares 
an error. The window size W is selected based on the alphabet size, and shall be assigned to 1024 
if the noise source is binary (that is, the noise source produces only two distinct values) and 512 if 
the noise source is not binary (that is, the noise source produces more than two distinct values). 
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Let next() yield the next sample from the noise source. Given a continuous sequence of noise 
samples, the cutoff value C and the window size W, the adaptive proportion test is performed as 
follows: 

1. A= next() 
2. B=1. 
3. For i = 1 to W–1 

If (A = next()) B=B+1 
If (B ≥ C) signal a failure 

4. Go to Step 1.  
 
The cutoff value C is chosen such that the probability of observing C or more identical samples in 
a window size of W is at most α. Mathematically, C satisfies the following equation10: 

Pr (B ≥ C) ≤  α . 

For binary sources, the developer is allowed to extend the test by also checking that W-B ≥ C, 
which would guarantee that a binary value occurring too frequently will be caught on the first test 
window. 
For noise sources where the alphabet size is large (e.g., greater than 256), the submitter may reduce 
the alphabet size to a lower value, using the method described in Section 6.4.  
 
The following table gives example cutoff values for various min-entropy estimates per sample and 
window sizes with α = 2−20.  
 

Table 2 Example cutoff values of the Adaptive Proportion Test  

Binary data  
W=1024 

Non-binary data  
W=512 

Entropy Cutoff 
Value C Entropy Cutoff 

Value C 

0.2 941 0.5 410 
0.4 840 1 311 
0.6 748 2 177 
0.8 664 4 62 
1 589 8 13 

 

                                                 

10 This probability can be computed using widely-available spreadsheet applications. In Microsoft Excel, Open Office 
Calc,and iWork Numbers, the calculation is done with the function =CRITBINOM(). For example, in Microsoft Excel, C 
would be computed as =1+CRITBINOM(W, power(2,( −H)),1−α). 
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4.5 Developer-Defined Alternatives to the Continuous Health Tests 

Developer-defined tests are always permitted in addition to the two approved tests listed in 
Section 4.4. Under some circumstances, the developer-defined tests may take the place of the two 
approved tests. The goal of the two approved continuous health tests specified in Section 4.4, is 
to detect two conditions: 
a. Some value is consecutively repeated many more times than expected, given the assessed 

entropy per sample of the source. 
b. Some value becomes much more common in the sequence of noise source outputs than 

expected, given the assessed entropy per sample of the source.  
The developer of the entropy source is in an excellent position to design health tests specific to the 
source and its known and suspected failure modes.  Therefore, this Recommendation also permits 
developer-defined alternative health tests to be used in place of the approved tests in Section 4.4, 
so long as the combination of the developer-defined tests and the entropy source itself can 
guarantee that these two conditions will not occur without being detected by the entropy source 
with at least the same probability.   
 
For concreteness, these are the criteria that are required for any alternative continuous health tests: 
a. If a single value appears more than 100/H consecutive times in a row in the sequence of 

noise source samples, the test shall detect this with a probability of at least 99 %. 

b. Let P = 2−H.  If the noise source's behavior changes so that the probability of observing a 
specific sample value increases to at least P* = 2−H/2, then the test shall detect this change with 
a probability of at least 50 % when examining 50 000 consecutive samples from this degraded 
source. 

The use of one or more of the approved continuous health test described in Section 4.4 can be 
avoided by providing convincing evidence that the failure being considered will be reliably 
detected by the developer-defined continuous tests.  This evidence may be a proof or the results of 
statistical simulations.  
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5 Testing the IID Assumption 

The samples from a noise source are independent and identically distributed (IID) if each sample 
has the same probability distribution as every other sample, and all samples are mutually 
independent. The IID assumption significantly simplifies the process of entropy estimation. When 
the IID assumption does not hold, i.e., the samples are either not identically distributed or are not 
independently distributed (or both), estimating entropy is more difficult and requires different 
methods.  

This section includes statistical tests that are designed to find evidence that the samples are not IID 
and if no evidence is found that the samples are non-IID, then it is assumed that the samples are 
IID (see Section 3.1.2). These tests take the sequence S = (s1,…,sL), where si ϵ A = {x1,…,xk}, as 
input, and test the hypothesis that the values in S are IID. If the hypothesis is rejected by any of 
the tests, the values in S are assumed to be non-IID.  

Statistical tests based on permutation testing (also known as shuffling tests) are given in Section 
5.1. Five additional chi-square tests are presented in Section 5.2. 

5.1 Permutation Testing 

Permutation testing is a way to test a statistical hypothesis in which the actual value of the test 
statistic is compared to a reference distribution that is inferred from the input data, rather than a 
standard statistical distribution. The general approach of permutation testing is to generate 10 000 
permutations of the dataset, computing a test statistic for each permutation and comparing the 
result with a test statistic computed on the original dataset; the process is listed in Figure 4. This 
is repeated for each of the test statistics described in Sections 5.1.1 – 5.1.11. The shuffle algorithm 
of step 2.1 is provided in Figure 5.  

Input: S = (s1,…, sL) 

Output: Decision on the IID assumption 

1. For each test i 
1.1. Assign the counters Ci,0 and Ci,1 to zero. 
1.2. Calculate the test statistic Ti on S. 

2. For j = 1 to 10 000 
2.1. Permute S using the Fisher-Yates shuffle algorithm.  
2.2. For each test i 

2.2.1. Calculate the test statistic T on the permuted data.  
2.2.2. If (T > Ti), increment Ci,0. If (T = Ti), increment Ci,1.  

3. If ((Ci,0+Ci,1≤5) or (Ci,0 ≥ 9995)) for any i, reject the IID assumption; else, assume that 
the noise source outputs are IID. 

Figure 4 Generic Structure for Permutation Testing 
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If the samples are IID, permuting the dataset is not expected to change the value of the test statistics 
significantly. In particular, the original dataset and permuted datasets are expected to be drawn 
from the same distribution; therefore, their test statistics should be similar. Unusually high or low 
test statistics are expected to occur infrequently. However, if the samples are not IID, then the 
original and permuted test statistics may be significantly different. The counters Ci,0 and C i,1 are 
used to find the ranking of the original test statistics among the permuted test statistics (i.e., where 
a statistic for the original dataset fits within an ordered list of the permuted datasets). Extreme 
values for the counters suggest that the data samples are not IID. If the sum of Ci,0 and C i,1 is less 
than 5, it means that the original test statistic has a very high rank; conversely, if Ci,0 is greater than 
9995, it means that the original test statistics has a very low rank. The cutoff values for C i,0 and 
Ci,1 are calculated using a type I error probability of 0.001.  

The tests described in the following subsections are intended to check the validity of the IID 
assumption. Some of the tests (e.g., the compression test) are effective at detecting repeated 
patterns of particular values (for example, strings of sample values that occur more often than 
would be expected by chance if the samples were IID), whereas some of the other tests (e.g., the 
number of directional runs test and the runs based on the median test) focus on the association 
between the numeric values of the successive samples in order to find an indication of a trend or 
some other relation, such as high sample values that are usually followed by low sample values.  

Input: S = (s1,…, sL) 

Output: Shuffled S = (s1,…, sL) 

1. for i from L downto 1 do 
a. Generate a random integer j such that 1≤ j ≤ i.  
b. Swap sj and si 

Figure 5 Pseudo-code of the Fisher-Yates Shuffle 

The tests are applicable to both binary and non-binary data, but for some of the tests, the number 
of distinct sample values, denoted k (the size of the set A), significantly affects the distribution of 
the test statistics, and thus the type I error. For such tests, one of the following conversions is 
applied to the input data, when the input is binary, i.e., k = 2.  

• Conversion I partitions the sequences into eight-bit non-overlapping blocks, and counts the 
number of ones in each block. Zeroes are appended when the last block has less than eight 
bits. For example, let the 20-bit input be (1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1). The first 
and the second eight-bit blocks include four and six ones, respectively. The last block, 
which is not complete, includes two ones. The output sequence is (4,  6,  2). 

• Conversion II partitions the sequences into eight-bit non-overlapping blocks, and 
calculates the integer value of each block. For example, let the input message be 
(1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1). The integer values of the first two blocks are 142, 
and 219. Zeroes are appended when the last block has less than eight bits. Then, the last 
block becomes (0,0,1,1,0,0,0,0) with an integer value of 48. The output sequence is (142, 
219, 48).  
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Descriptions of the individual tests will provide guidance on when to use each of these conversions. 

5.1.1 Excursion Test Statistic 

The excursion test statistic measures how far the running sum of sample values deviates from its 
average value at each point in the dataset. Given S = (s1,…, sL), the test statistic T is the largest 
deviation from the average and is calculated as follows: 

1. Calculate the average of the sample values, i.e., 𝑋𝑋� = (s1 + s2 + … + sL) / L 
2. For i = 1 to L 

Calculate di = | ∑ 𝑠𝑠𝑗𝑗 − 𝑖𝑖 ×𝑖𝑖
𝑗𝑗=1  𝑋𝑋� |. 

3. T = max (d1,…, dL).  
Example 1: Let the input sequence be S = (2, 15, 4, 10, 9). The average of the sample values is 8, 
and d1 = |2–8| = 6; d2 = |(2+15) – (2×8)| = 1; d3 = |(2+15+4) – (3×8)| = 3; d4 = |(2+15+4+10) – 
(4×8)| = 1; and d5 = |(2+15+4+10+9) – (5×8)| = 0. Then, T = max(6, 1, 3, 1, 0) = 6. 

Handling binary data: The test can be applied to binary data, and no additional conversion steps 
are required.  

5.1.2 Number of Directional Runs 

This test statistic determines the number of runs constructed using the relations between 
consecutive samples. Given S = (s1, …, sL), the test statistic T is calculated as follows: 

1. Construct the sequence 𝑆𝑆′ = (𝑠𝑠1′ ,…, 𝑠𝑠𝐿𝐿−1′ ), where  

𝑠𝑠𝑖𝑖′ =  � −1, if 𝑠𝑠𝑖𝑖 >  𝑠𝑠𝑖𝑖+1
+1, if 𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1

 

 for i = 1, …, L–1. 

2. The test statistic T is the number of runs in 𝑆𝑆′.  

Example 2: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then 𝑆𝑆′= (+1, +1, +1, +1, 
+1, +1, −1, −1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (−1, −1) and (+1, +1), so T 
= 3.  

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.  

5.1.3 Length of Directional Runs 

This test statistic determines the length of the longest run constructed using the relations between 
consecutive samples. Given S = (s1,…, sL), the test statistic T is calculated as follows: 

1. Construct the sequence 𝑆𝑆′= (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿−1′ ), where  
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𝑠𝑠𝑖𝑖′ =  � −1, if 𝑠𝑠𝑖𝑖 >  𝑠𝑠𝑖𝑖+1
+1, if 𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1

 

for i =1, …, L-1. 

2. The test statistic T is the length of the longest run in 𝑆𝑆′.  

Example 3: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S′= (+1, +1, +1, +1, 
+1, +1, −1, −1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (−1, −1) and (+1, +1), so T 
= 6. 

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.  

5.1.4 Number of Increases and Decreases 

This test statistic determines the maximum number of increases or decreases between consecutive 
sample values. Given S = (s1,…, sL), the test statistic T is calculated as follows: 

1. Construct the sequence 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿−1′ ), where  

𝑠𝑠𝑖𝑖′ =  � −1, if 𝑠𝑠𝑖𝑖 >  𝑠𝑠𝑖𝑖+1
+1, if 𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖+1

 

for i = 1, …, L-1. 

2. Calculate the number of –1’s and +1’s in 𝑆𝑆′; the test statistic T is the maximum of these 
numbers, i.e., T = max (number of –1’s, number of +1’s).  

Example 4: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then 𝑆𝑆′= (+1, +1, +1, +1, 
+1, +1, −1, −1, +1, +1). There are eight +1’s and two −1’s in S′, so T = max (number of +1s, 
number of −1s) = max (8, 2) = 8. 

Handling binary data: To test binary input data, first apply the Conversion I to the input sequence.  

5.1.5 Number of Runs Based on the Median 

This test statistic determines the number of runs that are constructed with respect to the median of 
the input data. Given S = (s1, …, sL), the test statistic T is calculated as follows:  

1. Find the median 𝑋𝑋� of S = (s1, …, sL).   

2. Construct the sequence 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿′ ) where  

𝑠𝑠𝑖𝑖′ =  � −1, if 𝑠𝑠𝑖𝑖 <  𝑋𝑋� 
+1, if  𝑠𝑠𝑖𝑖 ≥  𝑋𝑋�

 

for i =1, …, L. 

3. The test statistic T is the number of runs in 𝑆𝑆′.  
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Example 5: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median of the input sequence 
is 9. Then, 𝑆𝑆′ = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1). 
There are five runs, hence T = 5. 

Handling binary data: When the input data is binary, the median of the input data is assumed to 
be 0.5. No additional conversion steps are required. 

5.1.6 Length of Runs Based on Median 

This test statistic determines the length of the longest run that is constructed with respect to the 
median of the input data and is calculated as follows: 

1. Find the median 𝑋𝑋� of S = (s1, …, sL).   

2. Construct a temporary sequence 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠𝐿𝐿′ ) from the input sequence S = (s1, …, sL), as  

𝑠𝑠𝑖𝑖′ =  � −1, if 𝑠𝑠𝑖𝑖 <  𝑋𝑋� 
+1, if  𝑠𝑠𝑖𝑖 ≥  𝑋𝑋�

 

for i = 1, …, L. 

3. The test statistic T is the length of the longest run in 𝑆𝑆′.  
Example 6: Let the input sequence be S = (5, 15, 12, 1, 13, 9, 4). The median for this data subset 
is 9. Then, S ' = (–1, +1, +1, –1, +1, +1, –1). The runs are (–1), (+1, +1), (–1), (+1, +1), and (–1). 
The longest run has a length of 2; hence, T =2. 

Handling binary data: When the input data is binary, the median of the input data is assumed to 
be 0.5. No additional conversion steps are required. 

5.1.7 Average Collision Test Statistic  

The average collision test statistic counts the number of successive sample values until a duplicate 
is found. The average collision test statistic is calculated as follows: 

1. Let C be a list of the number of the samples observed to find two occurrences of the same 
value in the input sequence S = (s1, …, sL). C is initially empty.  

2. Let i = 1. 
3. While i < L 

a. Find the smallest j such that (si, …, si+j-1) contains two identical values. If no such j 
exists, break out of the while loop. 

b. Add j to the list C. 
c. i = i + j.  

4. The test statistic T is the average of all values in the list C.  
Example 7: Let the input sequence be S = (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). The first collision occurs for 
j = 3, since the second and third values are the same. 3 is added to the list C. Then, the first three 

jhill
Sticky Note
5.1.8 uses the same setup. Combine these tests within the implementation.

jhill
Sticky Note
These (5.1.5-5.1.6) are all dependent on ordering, so any translation needs to be order preserving.



NIST SP 800-90B   RECOMMENDATION FOR THE ENTROPY SOURCES  
  USED FOR RANDOM BIT GENERATION 

 34 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B 

 

samples are discarded, and the next sequence to be examined is (2, 0, 1, 0, 1, 1, 2). The collision 
occurs for j = 4. The third sequence to be examined is (1,1,2), and the collision occurs for j = 2. 
There are no collisions in the final sequence (2). Hence, C = [3,4,2]. The average of the values in 
C is T = 3.  

Handling binary data: To test binary input data, first apply Conversion II to the input sequence.  

5.1.8 Maximum Collision Test Statistic  

The maximum collision test statistic counts the number of successive sample values until a 
duplicate is found. The maximum collision test statistic is calculated as follows: 

1. Let C be a list of the number of samples observed to find two occurrences of the same value 
in the input sequence S = (s1, …, sL). C is initially empty.  

2. Let i = 1. 
3. While i < L 

a. Find the smallest j such that (si,…, si+j-1) contains two identical values. If no such j 
exists, break out of the while loop. 

b. Add j to the list C. 
c.  i=i+j.  

4. The test statistic T is the maximum value in the list C.  
Example 8: Let the input data be (2, 1, 1, 2, 0, 1, 0, 1, 1, 2). C = [3,4,2] is computed as in Example 
7.  T = max(3,4,2) = 4.  

Handling binary data: To test binary input data, first apply Conversion II to the input sequence.  

5.1.9 Periodicity Test Statistic  

The periodicity test aims to determine the number of periodic structures in the data. The test takes 
a lag parameter p as input, where p < L, and the test statistic T is calculated as follows: 

1. Initialize T to zero.  
2. For i = 1 to L − p 

If (si = si+p), increment T by one. 

Example 9: Let the input data be (2, 1, 2, 1, 0, 1, 0, 1, 1, 2), and let p = 2. Since si = si+p for five 
values of i (1, 2, 4, 5 and 6), T = 5. 

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.  

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.  
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5.1.10  Covariance Test Statistic 

The covariance test measures the strength of the lagged correlation. The test takes a lag value p < 
L as input. The test statistic is calculated as follows: 

1. Initialize T to zero.
2. For i = 1 to L – p

T=T+(si×si+p).  

Example 10: Let the input data be (5, 2, 6, 10, 12, 3, 1), and let p be 2. T is calculated as (5×6) + 
(2×10) + (6×12) + (10×3) + (12×1) = 164. 

Handling binary data: To test binary input data, first apply Conversion I to the input sequence. 

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.  

5.1.11  Compression Test Statistic  

General-purpose compression algorithms are well adapted for removing redundancy in a character 
string, particularly involving commonly recurring subsequences of characters. The compression 
test statistic for the input data is the length of that data subset after the samples are encoded into a 
character string and processed by a general-purpose compression algorithm. The compression test 
statistic is computed as follows: 

1. Encode the input data as a character string containing a list of values separated by a single
space, e.g., “S = (144, 21, 139, 0, 0, 15)” becomes “144 21 139 0 0 15”.

2. Compress the character string with the bzip2 compression algorithm provided in [BZ2].
3. T is the length of the compressed string, in bytes.

Handling binary data: The test can be applied directly to binary data, with no conversion required. 

5.2 Additional Chi-square Statistical Tests 

This section includes additional chi-square statistical procedures to test independence and 
goodness-of-fit. The independence tests attempt to discover dependencies in the probabilities 
between successive samples in the (entire) sequence submitted for testing (see Section 5.2.1 for 
non-binary data and Section 5.2.3 for binary data); the goodness-of-fit tests attempt to discover a 
failure to follow the same distribution in ten data subsets produced from the (entire) input sequence 
submitted for testing (see Section 5.2.2 for non-binary data and Section 5.2.4 for binary data). The 
length of the longest repeated substring test is provided in Section 5.2.5. 

5.2.1 Testing Independence for Non-Binary Data 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, the following steps are initially performed 
to determine the number of bins nbin needed for the chi-square tests.  
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1. Find the proportion 𝑝𝑝𝑖𝑖 of each xi in S, i.e., 𝑝𝑝𝑖𝑖 =  number of 𝑥𝑥𝑖𝑖 in 𝑆𝑆  
𝐿𝐿

. Calculate the expected number 
of occurrences of each possible pair (𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗) in S, as 𝑒𝑒𝑖𝑖,𝑗𝑗= 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝐿𝐿/2.  

2. Allocate the possible (𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗) pairs, starting from the smallest 𝑒𝑒𝑖𝑖,𝑗𝑗, into bins such that the 
expected value of each bin is at least five. The expected value of a bin is equal to the sum of 
the 𝑒𝑒𝑖𝑖,𝑗𝑗 values of the pairs that are included in the bin. After allocating all pairs, if the expected 
value of the last bin is less than five, merge the last two bins. Let nbin be the number of bins 
constructed using this procedure.  

After constructing the bins, the Chi-square test is executed as follows: 

1. Let o be a list of nbin counts, each initialized to 0. For j=1 to L-1: 
a. If the pair (sj, sj+1) is in bin i, increment oi by 1. 
b. Let j = j+2.  

2. The test statistic is calculated as T = ∑  (𝑜𝑜𝑖𝑖 − 𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 ) )2

𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 )
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖=1 . The test fails if T is greater than the 

critical value of the Chi-square test statistic with (nbin –1) – (k–1) = nbin –k degrees of freedom 
when the probability of type I error is chosen as 0.001. If the value of degrees of freedom is 
less than one, do not apply the test.  

Example 11: Let S be (2, 2, 3, 1, 3, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 
2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1, 3, 2, 3, 2, 3, 1, 2, 2, 3, 3, 2, 2, 2, 1, 3, 3, 3, 2, 3, 
2, 1, 2, 2, 3, 3, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 3, 3, 2, 3, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 1). The alphabet consists 
of k = 3 values {1, 2, 3}; and p1, p2, and p3 are 0.21, 0.41 and 0.38, respectively. With L = 100, the 
sorted expected values are calculated as:  

(zi, zj) (1,1) (1,3) (3,1) (1,2) (2,1) (3,3) (2,3) (3,2) (2,2) 
𝑒𝑒𝑖𝑖,𝑗𝑗 2.21 3.99 3.99 4.31 4.31 7.22 7.79 7.79 8.41 

The pairs can be allocated into nbin = 6 bins.  

Bin Pairs 𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 )  
1 (1,1), (1,3) 6.2 
2 (3,1), (1,2) 8.3 
3 (2,1), (3,3) 11.53 
4 (2,3) 7.79 
5 (3,2) 7.79 
6 (2,2) 8.41 

 
The frequencies for the bins are calculated as 7, 6, 10, 8, 12, and 7 respectively, and the test statistic 
is calculated as 3.46. The value of the degrees of freedom is 3 (= 6-3). The hypothesis is not 
rejected, since the test statistic is less than the critical value 16.266. 
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5.2.2 Testing Goodness-of-fit for Non-Binary Data 

The test checks whether the distribution of samples is identical for different parts of the input. 
Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, perform the following steps to calculate 
the number of bins nbin for the test.  

1. Let 𝑐𝑐𝑖𝑖 be the number of occurrences of xi in the entire dataset S, and let 𝑒𝑒𝑖𝑖 = 𝑐𝑐𝑖𝑖/10, for 1 ≤  i 
≤ k. Note that ci is divided by ten because S will be partitioned into ten data subsets. 

2. Let List[i] be the sample value with the ith smallest 𝑒𝑒𝑖𝑖 (e.g., List[1] has the smallest value for 
𝑒𝑒𝑖𝑖;  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[2] has the next smallest value, etc.) 

3. Starting from List[1], allocate the sample values into bins. Assign consecutive List[i] values to 
a bin until the sum of the 𝑒𝑒𝑖𝑖 for those binned items is at least five, then begin assigning the 
following List[i] value(s) to the next bin. If the expected value of the last bin is less than five, 
merge the last two bins. Let nbin be the number of bins constructed after this procedure. 

4. Let Ei be the expected number of sample values in Bin i; Ei is the sum of the ei for the listed 
items in that bin. For example, if Bin 1 contains (x1, x10 and x50), then E1 = e1 + e10 + e50. 

Example 12: Let the number of distinct sample values k be 4; and let c1 = 43, c2 = 55, c3 = 52 and 
c4=10. After partitioning the entire input sequence into 10 parts, the expected value of each sample 
becomes e1 = 4.3, e2 = 5.5, e3 = 5.2 and e4 = 1. The sample list starting with the smallest expected 
value is formed as List = [4, 1, 3, 2]. The first bin contains sample 4 and 1, and the expected value 
of Bin 1 becomes 5.3 (= e4+e1). The second bin contains sample 3, and the last bin contains sample 
2. Since the expected value of the last bin is greater than five, no additional merging is necessary. 
Given nbin, Ei and list of samples for each bin, the chi-square goodness-of-fit test is executed as 
follows: 

1. Partition S into ten non-overlapping sequences of length � 𝐿𝐿
10
�, where 𝑆𝑆𝑑𝑑 =

 (𝑠𝑠𝑑𝑑⌊𝐿𝐿/10⌋+1, … , 𝑠𝑠(𝑑𝑑+1)⌊𝐿𝐿/10⌋)  for d = 0,…, 9. If L is not a multiple of 10, the remaining samples 
are not used.  

2. T = 0. 
3. For d = 0 to 9 

3.1. For i = 1 to nbin  

3.1.1. Let oi be the total number of times the samples in Bin i appear in 𝑆𝑆𝑑𝑑. 

3.1.2. T = T  +  (𝑜𝑜𝑖𝑖− 𝐸𝐸𝑖𝑖  )2

𝐸𝐸𝑖𝑖  
. 

The test fails if the test statistic T is greater than the critical value of chi-square with 9(nbin -1) 
degrees of freedom when the type I error is chosen as 0.001.  

5.2.3 Testing Independence for Binary Data 

This test checks the independence assumption for binary data. A chi-square test for independence 
between adjacent bits could be used, but its power is limited, due to the small output space (i.e., 
the use of binary inputs). A more powerful check can be achieved by comparing the frequencies 
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of m-bit tuples to their expected values that are calculated by multiplying the probabilities of each 
successive bit, i.e., assuming that the samples are independent. If nearby bits are not independent, 
then the expected probabilities of m-bit tuples derived from their bit probabilities will be biased 
for the whole dataset, and a chi-square test statistic will be much larger than expected. 

Given the input binary data S = (s1, …, sL), the length of the tuples, m, is determined as follows: 

1. Let p0 and p1 be the proportion of zeroes and ones in S, respectively, i.e., 𝑝𝑝0 =  # 0′s in 𝑆𝑆  
𝐿𝐿

, 

and 𝑝𝑝1 =  # 1′s in 𝑆𝑆  
𝐿𝐿

. 

2. Find the maximum integer m such that min(𝑝𝑝0,𝑝𝑝1)𝑚𝑚 �𝐿𝐿
𝑚𝑚
� ≥ 5. If m is greater than 11, set 

m = 11. If m is 1, the test fails. For example, for p0 = 0.14, p1 = 0.86, and L = 1000, m = 2.  
The test is applied if m ≥ 2. 

1. Initialize T to 0. 

2. Partition S into non-overlapping m-bit blocks, denoted as 𝐵𝐵 = (𝐵𝐵1,…, 𝐵𝐵�𝐿𝐿𝑚𝑚�
). If L is not a 

multiple of m, discard the remaining bits. 
3. For each possible m-bit tuple (a1, a2, …, am) 

a. Let o be the number of times that the pattern (a1, a2, …, am) occurs in the input B. 
b. Let w be the number of ones in (a1, a2, …, am). 

c. Let e =  𝑝𝑝1𝑤𝑤(𝑝𝑝0)𝑚𝑚−𝑤𝑤 � 𝐿𝐿
𝑚𝑚
�. 

d. T = T + (𝑜𝑜−𝑒𝑒)2

𝑒𝑒
 .  

The test fails if the test statistic T is greater than the critical value of chi-square with 2m–2 degrees 
of freedom, when the type I error is chosen as 0.001.  

5.2.4 Testing Goodness-of-fit for Binary Data 

This test checks the distribution of the number of ones in non-overlapping intervals of the input 
data to determine whether the distribution of the ones remains the same throughout the sequence. 
Given the input binary data S = (s1, …, sL), the test description is as follows: 

1. Let p be the proportion of ones in the entire sequence S, i.e., p = (the number of ones in S)/ 
L. 

2. Partition S into ten non-overlapping subsets of length � 𝐿𝐿
10
�, where 𝑆𝑆𝑑𝑑= 

(𝑠𝑠𝑑𝑑⌊𝐿𝐿/10⌋+1, … , 𝑠𝑠(𝑑𝑑+1)⌊𝐿𝐿/10⌋) for d = 0, …, 9. If L is not a multiple of 10, the remaining bits 
are discarded. 

3. Initialize T to 0.  
4. Let the expected number of zeros and ones in each sub-sequence Sd be  
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𝑒𝑒0 = (1 − 𝑝𝑝) �
𝐿𝐿

10
�, 

 𝑒𝑒1 = 𝑝𝑝 �
𝐿𝐿

10
�,  

respectively. 
5. For d = 0 to 9  

a. Let 𝑜𝑜0 and 𝑜𝑜1 be the number of zeros and ones in 𝑆𝑆𝑑𝑑, respectively. 

b. T = T + (𝑜𝑜0−𝑒𝑒0 )2

𝑒𝑒0
+ (𝑜𝑜1−𝑒𝑒1 )2

𝑒𝑒1
. 

T is a chi-square random variable with nine degrees of freedom. The test fails if T is larger than 
the critical value at 0.001, which is 27.887.  

5.2.5 Length of the Longest Repeated Substring Test 

This test checks the IID assumption using the length of the longest repeated substring. If this length 
is significantly longer than the expected value, then the test invalidates the IID assumption. The 
test can be applied to binary and non-binary inputs. 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk},  

1. Find the proportion 𝑝𝑝𝑖𝑖 of each possible input value xi in S, i.e., 𝑝𝑝𝑖𝑖 =  number of 𝑥𝑥𝑖𝑖 in 𝑆𝑆  
𝐿𝐿

.  

2. Calculate the collision probability as pcol =  ∑ 𝑝𝑝𝑖𝑖2𝑘𝑘
𝑖𝑖=1 .  

3. Find the length of the longest repeated substring W, i.e., find the largest W such that, for at 
least one i ≠ j, si = sj, si+1 = sj+1, ... , si+W-1 = sj+W-1. 

4. The number of overlapping subsequences of length W in S is L–W+1, and the number of pairs 
of overlapping subsequences is �𝐿𝐿 −𝑊𝑊 + 1

2 �.  

5. Let X be a binomially distributed random variable with parameters N=�𝐿𝐿 −𝑊𝑊 + 1
2 � and a 

probability of success pcol
W. Calculate the probability that X is greater than or equal to 1, i.e., 

Pr (X ≥ 1) = 1− Pr (X = 0) = 1− (1− pcol
W)N. 

The test fails if Pr (X ≥ 1) is less than 0.001. 

  

jhill
Highlight
This is equivalent to failing if log(0.999)/log(1-P_{col}^W) > N.

jhill
Sticky Note
Just calculate the p-value. In the Chi-squared test, the CDF of the Chi-squared distribution is based on the lower regularized gamma function. See https://en.wikipedia.org/wiki/Chi-squared_distribution#Cumulative_distribution_function.
Thus, the p-value is just 1-P(k/2,x/2)=Q(k/2,x/2), where P and Q denote the lower and upper regularized gamma functions (respectively), k is the degrees of freedom, and x is the calculated chi-squared test statistic.

jhill
Sticky Note
This can be efficiently calculated using a Suffix Tree/Trie or LCP array. See the notes at the end of this document.

jhill
Highlight
Note that A choose 2 is just A*(A-1)/2.

jhill
Highlight
Note that A choose 2 is just A*(A-1)/2.



NIST SP 800-90B   RECOMMENDATION FOR THE ENTROPY SOURCES  
  USED FOR RANDOM BIT GENERATION 

 40 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-90B 

 

6 Estimating Min-Entropy 

One of the essential requirements of an entropy source is the ability to reliably create random 
outputs. To ensure that sufficient entropy is input to an RBG construction in SP 800-90C, the 
amount of entropy produced per noise source sample must be determined. This section describes 
generic estimation methods that will be used to test the noise source and also the conditioning 
component, when non-vetted conditioning components are used. It should be noted that the entropy 
estimation methods described in this section rely on some statistical assumptions that may not hold 
for all types of noise sources. The methods should not replace in-depth analysis of noise sources, 
but should be used to support the initial entropy estimate of the submitter (see Requirement 3 in 
Section 3.2.2). An example noise source analysis is provided in [HaFis15]. 

Each estimator takes a sequence S = (s1, …, sL) as its input, where each si comes from an output 
space A = {x1, …, xk} that is specified by the submitter. The estimators presented in this 
Recommendation follow a variety of strategies, which cover a range of assumptions about the data. 
For further information about the theory and origins of these estimators, see Appendix G. The 
estimators that are to be applied to a sequence depend on whether the data has been determined to 
be IID or non-IID. For IID data, the min-entropy estimation is determined as specified in Section 
6.1, whereas for non-IID data, the procedures in Section 6.2 are used. 

The estimators presented in this section work well when the entropy-per-sample is greater than 
0.1. For alphabet sizes greater than 256, some of the estimators are not very efficient. Therefore, 
for efficiency purposes, the method described in Section 6.4 can be used to reduce the alphabet 
space of the outputs. 

6.1 IID Track: Entropy Estimation for IID Data 

For sources with IID outputs, the min-entropy estimation is determined using the most common 
value estimate described in Section 6.3.1. It is important to note that this estimate typically 
provides an overestimation when the samples from the source are not IID11.  

6.2 Non-IID Track: Entropy Estimation for Non-IID Data 

Many viable noise sources fail to produce IID outputs. Moreover, some sources may have 
dependencies that are beyond the ability of the tester to address. To derive any utility out of such 
sources, a diverse and conservative set of entropy tests are required. Testing sequences with 
dependent values may result in overestimates of entropy. However, a large, diverse battery of 
estimates minimizes the probability that such a source’s entropy is greatly overestimated.  

                                                 

11 However, it is possible for this estimate to slightly underestimate the true min-entropy. It is believed that this underestimation is 
likely to not exceed one bit because of the relationship between min-entropy and the expected guessing work derived in Appendix 
D. Of course, such an underestimate would not indicate that a guessing attack that ignores dependencies could be less costly than 
one that takes the dependencies into account. As an example, consider a data sample consisting of pairs of bytes generated from 
the joint distribution on two bytes X and Y, each having possible values A and B, where Pr(X=A, Y=A)=0.104, 
Pr(X=A,Y=B)=0.332, Pr(X=B,Y=A)=0.239, and Pr(X=B,Y=B)=0.325.  The min-entropy according to the MCV estimator is 0.712, 
while the true min-entropy is 0.795. 
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For non-IID data, the following estimators shall be calculated on the outputs of the noise source 
and outputs of any conditioning component that is not listed in Section 3.1.5.1.1, and the minimum 
of all the estimates is taken as the entropy assessment of the entropy source for this 
Recommendation: 

• The Most Common Value Estimate (Section 6.3.1), 

• The Collision Estimate (Section 6.3.2), 

• The Markov Estimate (Section 6.3.3), 

• The Compression Estimate (Section 6.3.4), 

• The t-Tuple Estimate (Section 6.3.5), 

• The Longest Repeated Substring (LRS) Estimate (Section 6.3.6), 

• The Multi Most Common in Window Prediction Estimate (Section 6.3.7), 

• The Lag Prediction Estimate (Section 6.3.8), 

• The MultiMMC Prediction Estimate (Section 6.3.9), and 

• The LZ78Y Prediction Estimate (Section 6.3.10). 
The Collision, Markov and Compression estimates are only applied to binary inputs.  
 

6.3 Estimators 

6.3.1 The Most Common Value Estimate  

This method first finds the proportion 𝑝̂𝑝 of the most common value in the input dataset, and then 
constructs a confidence interval for this proportion. The upper bound of the confidence interval is 
used to estimate the min-entropy per sample of the source.  

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 

1. Find the proportion of the most common value 𝑝̂𝑝 in the dataset, i.e.,  

𝑝𝑝 �= max
𝑖𝑖

#{𝑥𝑥𝑖𝑖 in 𝑆𝑆}
𝐿𝐿

. 

2. Calculate an upper bound on the probability of the most common value 𝑝𝑝𝑢𝑢 as  

𝑝𝑝𝑢𝑢 =  min�1, 𝑝̂𝑝 + 2.576�
𝑝̂𝑝 (1 − 𝑝̂𝑝)
𝐿𝐿 − 1

�, 

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value. 

3. The estimated min-entropy is –log2(𝑝𝑝𝑢𝑢).  
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Example: If the dataset is S = (0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 1), with L = 20, the 
most common value is 1, with 𝑝̂𝑝 = 0.4. 𝑝𝑝𝑢𝑢 = 0.4 + 2.576√0.012 = 0.6895. The min-entropy 
estimate is −log2 (0.6822) = 0.5363. 

6.3.2 The Collision Estimate 

The collision estimate, proposed by Hagerty and Draper [HD12], measures the mean number of 
samples to the first collision in a dataset, where a collision is any repeated value. The goal of the 
method is to estimate the probability of the most-likely output value, based on the collision times. 
The method will produce a low entropy estimate for noise sources that have considerable bias 
toward a particular output or value (i.e., the mean time until a collision is relatively short), while 
producing a higher entropy estimate for a longer mean time to collision.  

This entropy estimation method is only applied to binary inputs. 

Given the input S = (s1, …, sL), where si ϵ A = {0,1}, 

1. Set v = 0, index =1.
2. Beginning with sindex, step through the input until any observed value is repeated; i.e., find

the smallest j such that si = sj, for some i with index ≤ 𝑖𝑖 < 𝑗𝑗.
3. Set v = v + 1, tv = j – index + 1 and index = j + 1.
4. Repeat steps 2-3 until the end of the dataset is reached.

5. Calculate the sample mean 𝑋𝑋�, and the sample standard deviation 𝜎𝜎�, of ti as

𝑋𝑋� = 1
𝑣𝑣
∑ 𝑡𝑡𝑖𝑖𝑣𝑣
𝑖𝑖=1 ,  𝜎𝜎� = � 1

𝑣𝑣−1
∑ (𝑡𝑡𝑖𝑖− 𝑋𝑋�)2𝑣𝑣
𝑖𝑖=1 . 

6. Compute the lower-bound of the confidence interval for the mean, based on a normal
distribution with a confidence level of 99 %,

𝑋𝑋′� = 𝑋𝑋� − 2.576
𝜎𝜎�
√𝑣𝑣

. 

7. Using a binary search, solve for the parameter p, such that

𝑋𝑋′� = 𝑝𝑝𝑞𝑞−2 �1 +
1
2

(𝑝𝑝−1 − 𝑞𝑞−1)�𝐹𝐹(𝑞𝑞) − 𝑝𝑝𝑞𝑞−1
1
2

(𝑝𝑝−1 − 𝑞𝑞−1). 

where 

𝑞𝑞 = 1 − 𝑝𝑝, 

 𝑝𝑝 ≥ 𝑞𝑞, 

𝐹𝐹(1 𝑧𝑧⁄ ) = Γ(3, 𝑧𝑧)𝑧𝑧−3𝑒𝑒𝑧𝑧, 
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and Γ(a,b) is the incomplete Gamma function defined as ∫ 𝑡𝑡𝑎𝑎−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑.∞
𝑏𝑏  An efficient 

implementation of F(1/z) is provided in Appendix G.1.1. The bounds of the binary search 
should be 1/2 and 1.   

8. If the binary search yields a solution, then the min-entropy estimation is the negative 
logarithm of the parameter, p: 

min-entropy = –log2( p). 

If the search does not yield a solution, then the min-entropy estimation is: 

min-entropy = log2(2)=1. 

Example: Suppose that S = (1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 
0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0). The collisions of the sequence are (1, 0, 0), (0, 1, 1), (1, 0, 0), (1, 0, 
1), (0, 1, 0), (1, 1), (1, 0, 0), (1, 1), (0, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1). After step 5, 
v=14, and the sequence (t1, … tv) is (3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2). Then 𝑋𝑋� = 2.7143,𝜎𝜎� =
0.4688, and 𝑋𝑋�′ =  2.3915. The solution to the equation is p = 0.7329, giving an estimated min-
entropy of 0.4483. 

6.3.3 The Markov Estimate 

In a first-order Markov process, the next sample value depends only on the latest observed sample 
value; in an nth-order Markov process, the next sample value depends only on the previous n 
observed values. Therefore, a Markov model can be used as a template for testing sources with 
dependencies. The Markov estimate provides a min-entropy estimate by measuring the 
dependencies between consecutive values from the input dataset. The min-entropy estimate is 
based on the entropy present in any subsequence (i.e., chain) of outputs, instead of an estimate of 
the min-entropy per output.  

Samples are collected from the noise source, and specified as d-long chains of samples. From this 
data, probabilities are determined for both the initial state and transitions between any two states. 
These probabilities are used to determine the highest probability of any particular d-long chain of 
samples. The corresponding maximum probability is used to determine the min-entropy present in 
all such chains generated by the noise source. This min-entropy value is particular to d-long chains 
and cannot be extrapolated linearly; i.e., chains of length wd will not necessarily have w times as 
much min-entropy present as a d-long chain. It may not be possible to know what a typical output 
length will be at the time of testing. Therefore, although not mathematically correct, in practice, 
calculating an entropy estimate per sample (extrapolated from that of the d-long chain) provides 
estimates that are close.  

This entropy estimation method is only applied to binary inputs.  

Given the input S = (s1, …, sL), where si ϵ A = {0,1}, 

1. Estimate the initial probabilities for each output value, 𝑃𝑃0 = #{0 in 𝑆𝑆}
𝐿𝐿

 and 𝑃𝑃1 = 1 −  𝑃𝑃0.  
2. Let T be the 2×2 transition matrix of the form  
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 0 1 
0 𝑃𝑃0,0 𝑃𝑃0,1 
1 𝑃𝑃1,0 𝑃𝑃1,1 

  
where the probabilities are calculated as  
 

𝑃𝑃0,0 = #{00 in 𝑆𝑆}
#{00 in 𝑆𝑆}+#{01 in 𝑆𝑆} , 𝑃𝑃0,1 = #{01 in 𝑆𝑆}

#{00 in 𝑆𝑆}+#{01 in 𝑆𝑆}, 
 

 𝑃𝑃1,0 = #{10 in 𝑆𝑆}
#{10 in 𝑆𝑆}+#{11 in 𝑆𝑆},  and 𝑃𝑃1,1 = #{11 in 𝑆𝑆}

#{10 in 𝑆𝑆}+#{11 in 𝑆𝑆} . 
 

3. Find the probability of the most likely sequence of outputs of length 128, as calculated 
below. 
 

Sequence Probability 

00…0 𝑃𝑃0×𝑃𝑃0,0
127 

0101…01 𝑃𝑃0×𝑃𝑃0,1
64×𝑃𝑃1,0

63 

011…1 𝑃𝑃0×𝑃𝑃0,1×𝑃𝑃1,1
126 

100…0 𝑃𝑃1×𝑃𝑃1,0×𝑃𝑃0,0
126 

1010…10 𝑃𝑃1×𝑃𝑃1,0
64×𝑃𝑃0,1

63 

11…1 𝑃𝑃1×𝑃𝑃1,1
127 

 
4. Let 𝑝̂𝑝max be the maximum of the probabilities in the table given above. The min-entropy 
estimate is the negative logarithm of the probability of the most likely sequence of outputs, 𝑝̂𝑝max: 

min-entropy = min(–log2(𝑝̂𝑝max)/128,1) 
Example: For the purpose of this example12, suppose that, L = 40 and S = (1, 0, 0, 0, 1, 1, 1, 0, 0, 
1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0). 𝑃𝑃0 = 0.475 and 
𝑃𝑃1 =0.525. The transition matrix is calculated as  

 0 1 
0 0.389 0.611 

1 0.571 0.429 
The probabilities of the possible sequences are  

                                                 

12 The test is designed for long sequences (i.e., L ≈ 1 000 000), for the purpose of the example, a very small value of L is used.  
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Sequence Probability 

00…0 3.9837×10-53 

0101…01 4.4813×10-30 

011…1 1.4202×10-47 

10…0 6.4631×10-53 

1010…10 4.6288×10-30 

11…1 1.1021×10-47 

 

The resulting entropy estimate is min(– log2 (4.6288×10-30)/128,1) = min(0.761,1) = 0.761.  

6.3.4 The Compression Estimate 

The compression estimate, proposed by Hagerty and Draper [HD12], computes the entropy rate of 
a dataset, based on how much the dataset can be compressed. This estimator is based on the Maurer 
Universal Statistic [Mau92]. The estimate is computed by generating a dictionary of values, and 
then computing the average number of samples required to produce an output, based on the 
dictionary. One advantage of using the Maurer statistic is that there is no assumption of 
independence. When sequences with dependencies is tested with this statistic, the compression 
rate is affected (and therefore the entropy), but an entropy estimate is still obtained. A calculation 
of the Maurer statistic is efficient, as it requires only one pass through the dataset to provide an 
entropy estimate.  

Given a dataset from the noise source, the samples are first partitioned into two disjoint groups. 
The first group serves as the dictionary for the compression algorithm; the second group is used 
as the test group. The compression values are calculated over the test group to determine the mean, 
which is the Maurer statistic. Using the same method as the collision estimate, the probability 
distribution that has the minimum possible entropy for the calculated Maurer statistic is 
determined. For this distribution, the entropy per sample is calculated as the lower bound on the 
entropy that is present.  

This entropy estimation method is only applied to binary inputs.  

Given the input S = (s1, …, sL), where si ϵ A = {0,1}, 

1. Let b =  6. Create a new sequence, 𝑆𝑆′ = (𝑠𝑠1′ , … , 𝑠𝑠⌊𝐿𝐿/𝑏𝑏⌋
′ ), by dividing S into non-overlapping 

b-bit blocks. If L is not a multiple of b, discard the extra data. 
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2. Partition the dataset, 𝑆𝑆′, into two disjoint groups. These two groups will form the dictionary 
and the test data. 

a. Create the dictionary from the first d = 1000 elements of 𝑆𝑆′, (𝑠𝑠1′ , … , 𝑠𝑠𝑑𝑑′ ). 

b. Use the remaining 𝑣𝑣 = ⌊𝐿𝐿/𝑏𝑏⌋ − 𝑑𝑑 observations, (𝑠𝑠𝑑𝑑+1′ , … , 𝑠𝑠⌊𝐿𝐿/𝑏𝑏⌋
′ ), for testing. 

3. Initialize the dictionary dict to an all zero array of size 2b. For i from 1 to d, let dict[𝑠𝑠𝑖𝑖′] = i. 
The value of dict[𝑠𝑠𝑖𝑖′] is the index of the last occurrence of each 𝑠𝑠𝑖𝑖′ in the dictionary. 

4. Run the test data against the dictionary created in Step 2. 
a. Let D be a list of length v.  

b. For i from 𝑑𝑑 + 1 to ⌊𝐿𝐿/𝑏𝑏⌋:  

i. If dict[𝑠𝑠𝑖𝑖′] is non-zero, then Di-d = i – dict[𝑠𝑠𝑖𝑖′]. Update the dictionary with the 
index of the most recent observation, dict[𝑠𝑠𝑖𝑖′]=i. 

ii. If dict[si] is zero, add that value to the dictionary, i.e., dict[𝑠𝑠𝑖𝑖′] =i. Let Di-d = 
i.  

5. Calculate the sample mean, 𝑋𝑋�, and sample standard deviation13, 𝜎𝜎�, of (log2(D1), …, 
log2(Dv)).  
   

𝑋𝑋� =
∑ log2𝐷𝐷𝑖𝑖𝑣𝑣
𝑖𝑖=1

𝑣𝑣
 , 

𝑐𝑐 =  0.5907 

and 

𝜎𝜎� = 𝑐𝑐�
∑ (log2𝐷𝐷𝑖𝑖)2𝑣𝑣
𝑖𝑖=1
𝑣𝑣 − 1

−  𝑋𝑋�2 . 

6. Compute the lower-bound of the confidence interval for the mean, based on a normal 
distribution using 

𝑋𝑋′� = 𝑋𝑋� −
2.576𝜎𝜎�
√𝑣𝑣

. 

7. Using a binary search, solve for the parameter p, such that the following equation is true:  

𝑋𝑋′� = 𝐺𝐺(𝑝𝑝) + (2𝑏𝑏 − 1)𝐺𝐺(𝑞𝑞), 

 where  

                                                 

13 Note that a correction factor is applied to the standard deviation, as described in [Mau92] and computed with higher accuracy in 
[CoNa98]. This correction factor reduces the standard deviation to account for dependencies in the Di values. 
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𝐺𝐺(𝑧𝑧) = 1
𝑣𝑣
∑ ∑ log2(𝑢𝑢)𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢)𝑡𝑡

𝑢𝑢=1
𝐿𝐿
𝑡𝑡=𝑑𝑑+1 , 

𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢) = �𝑧𝑧
2(1 − 𝑧𝑧)𝑢𝑢−1 𝑖𝑖𝑖𝑖 𝑢𝑢 < 𝑡𝑡
𝑧𝑧(1 − 𝑧𝑧)𝑡𝑡−1 𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑡𝑡

    , 

and 

𝑞𝑞 =  
1 − 𝑝𝑝

2𝑏𝑏 − 1
. 

The bounds of the binary search should be 2−𝑏𝑏and 1. 
8. If the binary search yields a solution, then the min-entropy is the negative logarithm of the

parameter, p:
min-entropy = –log2(p)/b. 

If the search does not yield a solution, then the min-entropy estimation is: 

min-entropy = 1. 

Example: For illustrative purposes, suppose that d = 4 (instead of 1000), L = 48 and S = (1, 0, 0, 0, 
1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1 ,1, 1, 
0, 0, 0, 1, 1). After step 1, the new blocked sequence is 𝑆𝑆′ = (100011, 100101, 010111, 001100, 
011100, 101010, 111011, 100011). The dictionary sequence is (100011, 100101, 010111, 
001100), and the testing sequence is (011100, 101010, 111011, 100011). v = 4. After the dictionary 
is initialized in step 3, it has the following values (only non-zero values are shown):  

i 1 2 3 4 

𝑠𝑠𝑖𝑖′ 100011 100101 010111 001100 

dict[𝑠𝑠𝑖𝑖′] 1 2 3 4 

After Step 4, the resulting D1 = 5, D2 = 6, D3 = 7, and D4 = 7. The values computed in step 5 are 
𝑋𝑋� = 2.6304 and 𝜎𝜎� = 0.9074, and the value for step 6 is 𝑋𝑋′� = 1.4617. The value of p that solves 
the equation in step 7 is 0.5715, and the min-entropy estimate is 0.1345. 

6.3.5 t-Tuple Estimate 

This method examines the frequency of t-tuples (pairs, triples, etc.) that appears in the input dataset 
and produces an estimate of the entropy per sample, based on the frequency of those t-tuples. The 
frequency of the t-tuple (r1, r2, …, rt) in S = (s1, …, sL) is the number of i’s such that si = r1, si+1 = 
r2, …, si+t-1 = rt. It should be noted that the tuples can overlap. 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 
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1. Find the largest t such that the number of occurrences of the most common t-tuple in S is
at least 35.

2. Let Q[i] store the number of occurrences of the most common i-tuple in S for i = 1, ..., t.
For example, in S=(2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), Q[1] =
max(#0’s,#1’s,#2’s) = #0’s = 9, and Q[2] = 4 is obtained by the number of the tuple 01 in
S.

3. For i = 1 to t, let P[i] = Q[i] / (L-i+1), and compute an estimate on the maximum individual
sample value probability as  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚[𝑖𝑖] = 𝑃𝑃[𝑖𝑖]1/𝑖𝑖. Let 𝑝̂𝑝max= max (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚[1], … ,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡]).

4. Calculate an upper bound on the probability of the most common value 𝑝𝑝𝑢𝑢 as

𝑝𝑝𝑢𝑢 =  min�1, 𝑝̂𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 2.576�
𝑝̂𝑝𝑚𝑚𝑚𝑚𝑚𝑚  (1 − 𝑝̂𝑝𝑚𝑚𝑚𝑚𝑚𝑚)

𝐿𝐿 − 1
�, 

5. The entropy estimate is calculated as –log2 (𝑝𝑝𝑢𝑢).
Example: For the purpose of this example, suppose that the cutoff is 3 instead of 35 in step one. 
Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), and L = 21.  The number 
of occurrences of the most common 4-tuple is 2, which falls below the threshold, and therefore t 
= 3. In step 2, Q[1] = 9, Q[2] = 4, and Q[3] = 3. P[1] = 0.4286, P[2] = 0.2, P[3] = 0.1579. Pmax[1] 
= 0.4286, Pmax[2] = 0.4472, Pmax[3] = 0.5405, and 𝑝̂𝑝max=0.5405. The upper bound of a 99 % 
confidence interval is 0.8276. The min-entropy estimate is −log2 (0.8276) = 0.273.  

6.3.6 Longest Repeated Substring (LRS) Estimate 

This method estimates the collision entropy (sampling without replacement) of the source, based 
on the number of repeated substrings (tuples) within the input dataset. Although this method 
estimates collision entropy (an upper bound on min-entropy), this estimate handles tuple sizes that 
are too large for the t-tuple estimate, and is therefore a complementary estimate. 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 

1. Find the smallest u such that the number of occurrences of the most common u-tuple in S
is less than 35.

2. Find the largest v such that the number of occurrences of the most common v-tuple in S is
at least 2, and the most common (v+1)-tuple in S occurs once. In other words, v is the
largest length that a tuple repeat occurs. If v < u, this estimate cannot be computed.

3. For W = u to v, compute the estimated W-tuple collision probability

𝑃𝑃𝑊𝑊 =
∑ �𝐶𝐶𝑖𝑖2 �𝑖𝑖

�𝐿𝐿−𝑊𝑊+1
2 �

 , 

where Ci is the number of occurrences of the ith unique W-tuple. Compute the estimated 
average collision probability per string symbol as 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑊𝑊 =  𝑃𝑃𝑊𝑊1/𝑊𝑊. Let 𝑝̂𝑝 =
 max(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢 , … ,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣 ). 
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4. Calculate an upper bound on the probability of the most common value 𝑝𝑝𝑢𝑢 as

𝑝𝑝𝑢𝑢 =  min�1, 𝑝̂𝑝 + 2.576�
𝑝̂𝑝 (1 − 𝑝̂𝑝)
𝐿𝐿 − 1

�, 

5. The entropy estimate is calculated as –log2 (𝑝𝑝𝑢𝑢).
Example: For the purpose of this example, suppose that the cutoff is 3 instead of 35 in step 1. 
Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), and L = 21. In step 1, u is 
calculated as 4, as the frequency of the most common 4-tuple is 2. In step 2, v is calculated as 5. 
After step 3, P4 = 0.0131, P5 = 0.0074, Pmax,4 = 0.3381, Pmax,5 = 0.3744, and 𝑝̂𝑝 =
 max(0.3381, 0.3744) = 0.3744. After step 4, 𝑝𝑝𝑢𝑢 = 0.6531. The min-entropy estimate is −log2
(0.6531) = 0.6146. 

6.3.7 Multi Most Common in Window Prediction Estimate 

The Multi Most Common in Window (MultiMCW) predictor contains several subpredictors, each 
of which aims to guess the next output, based on the last w outputs. Each subpredictor predicts the 
value that occurs most often in that window of w previous outputs. The MultiMCW predictor keeps 
a scoreboard that records the number of times that each subpredictor was correct, and uses the 
subpredictor with the most correct predictions to predict the next value. In the event of a tie, the 
most common sample value that has appeared most recently is predicted. This predictor was 
designed for cases where the most common value changes over time, but still remains relatively 
stationary over reasonable lengths of the sequence.

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 

1. Let window sizes be w1=63, w2=255, w3=1023, w4=4095, and N = L − w1. Let correct be
an array of N Boolean values, each initialized to 0.

2. Let scoreboard be a list of four counters, each initialized to 0. Let frequent be a list of four
values, each initialized to Null. Let winner = 1.

3. For i = w1 + 1 to L:
a. For  j =1 to 4,

i. If i > wj, let frequentj be the most frequent value in (si-wj, si-wj+1, …, si-1). If
there is a tie, then the most frequent value that has appeared most recently
is assigned to frequentj.

ii. Else, let frequentj = Null.
b. Let prediction = frequentwinner.

c. If (prediction = si), let correcti- w1 = 1.

d. Update the scoreboard. For  j =1 to 4,
i. If (frequentj = si)

1. Let scoreboardj = scoreboardj +1
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2. If scoreboardj ≥ scoreboardwinner, let winner =j
4. Let C be the number of ones in correct.

5. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 % 
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  is calculated as: 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01 

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0,

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +  2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙 �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1  ), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value. 

6. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary
search to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =  
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 × 

1
𝑥𝑥𝑁𝑁+1

 , 

where  𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and x = x10, derived by iterating the recurrence relation 

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1 

for j from 1 to 10, and x0 = 1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  using the logarithm of these 
equations is robust against overflows. Table 3 given in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐. 

7. The min-entropy is the negative logarithm of the greater performance metric

min-entropy =  −log2(max(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,
1
𝑘𝑘

)). 

Example: Suppose that S = (1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 0, 0), so that L = 12. For the purpose of this 
example, suppose that w1 = 3, w2 = 5, w3 = 7, w4 = 9 (instead of w1 = 63, w2 = 255, w3 = 1023, w4 
= 4095). Then N = 9. In step 3, the values are as follows: 

i frequent scoreboard 
(step 3b) 

Winner 
(step 3b) 

prediction si correcti-w1 scoreboard 
(step 3d) 

4 (1, --,  --, --) (0, 0, 0, 0) 1 1 0 0 (0, 0, 0, 0) 
5 (0, --,  --, --) (0, 0, 0, 0) 1 0 2 0 (0, 0, 0, 0) 
6 (2, 2, --,  --) (0, 0, 0, 0) 1 2 1 0 (0, 0, 0, 0) 
7 (1, 1, --, --) (0, 0, 0, 0) 1 1 1 1 (1, 1, 0, 0) 
8 (1, 1, 1, --) (1, 1, 0, 0) 2 1 2 0 (1, 1, 0, 0) 
9 (1, 2, 2, --) (1, 1, 0, 0) 2 2 2 1 (1, 2, 1, 0) 

10 (2, 2, 2, 2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0) 
11 (2, 2, 2,2) (1, 2, 1, 0) 2 2 0 0 (1, 2, 1, 0) 
12 (0, 0, 2, 0) (1, 2, 1, 0) 2 0 0 1 (2, 3, 1, 1) 

jhill
Sticky Note
All the binary searches use the same logic and should be implemented in the same code. It's important to understand and explicitly test the invariants each round to verify that they actually remain invariant as the search continues. In each of these cases, so long as the upper bound is, in fact, a valid upper bound, then one can always return the current upper bound (which translates to the lowest assessed min-entropy) in the event that various bizarre floating-point errors occur within the search. All functions whose values are being searched are at least weakly monotonically decreasing functions. "Equality" and notions of "close" are subtle! See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
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Sticky Note
Note that this procedure (step 6) is likely to run into floating point precision issues. Care must be taken to avoid different answers between different compilers.

The binary search to find a solution for the first equality here should be calculated after first taking the log of both sides.

jhill
Highlight
This is a local guess of an upper confidence interval bound, under the assumption that this most probable symbol proportion is distributed as per the binomial distribution (This CI estimate is made under a normal approximation of the binomial distribution).

jhill
Highlight
Equivalent to 0.01=(1-P_{global}')^N, so this value of P_{global}' is the largest value such that we expect to get no correct guesses after N trials at least 1% of the time.
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This value 0.99 is the target probability that there is no run of length r. Note that [Kelsey-McKay-Turan 2015] would seem to indicate that the sought value should instead be 0.01 (which would results in a greater value for P_local).

McKay commented "[The target probability] is not related to the [confidence interval], but rather can be tuned to the needs of a particular application... During the development of 90B, we looked at several different target probabilities. The main reason that we chose to set the target probability as 0.99 is because we wanted the local min-entropy estimate to be lower than the global min-entropy estimate only when a large number of correct guesses were clustered locally but the global estimate didn’t reflect it."

This calculation is as per Feller's _Introduction to Probability Theory and It's Applications_ Vol. 1, Chapter 13, section 7 (in particular this is equation 7.11, and x is a root of the denominator of equation 7.6).
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In practice, you can often stop well before this (and sometimes more than 10 are necessary...) This iteration is monotonic up and bounded. It is better to just wait for the value to converge in whatever numerical representation is being used.
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This is seeking a root for the polynomial f(x)=1-x+q p^r x^(r+1). To see this, note that x_j is monotonic up (by induction), x_j is bounded x_j <= 1/p (by induction), and thus the sequence converges. Convergence implies that (x_j - x_{j+1}) -> 0, or (alternately stated) f(x_j) ->0.
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After all of the predictions are made, correct = (0, 0, 0, 1, 0, 1, 0, 0, 1). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.3333, 
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = 0.7627, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.036, and the resulting min-entropy estimate is 0.3908.   

6.3.8 The Lag Prediction Estimate 

The lag predictor contains several subpredictors, each of which predicts the next output, based on 
a specified lag. The lag predictor keeps a scoreboard that records the number of times that each 
subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the 
next value.  

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 

1. Let D = 128, and N = L −1. Let lag be a list of D values, each initialized to Null. Let correct
be a list of N Boolean values, each initialized to 0.

2. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1.
3. For i = 2 to L:

a. For d = 1 to D:

i. If (d < i), lagd = si−d,

ii. Else lagd = Null.
b. Let prediction = lagwinner.
c. If (prediction = si,) let correcti-1 = 1.
d. Update the scoreboard. For d = 1 to D:

i. If (lagd = si)
1. Let scoreboardd = scoreboardd +1.
2. If scoreboardd ≥ scoreboardwinner, let winner = d.

4. Let C be the number of ones in correct.

5. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 % 
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  is calculated as: 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01 

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0,

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +  2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1  ), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value. 

6. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary
search to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =  
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 × 

1
𝑥𝑥𝑁𝑁+1

 , 
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Sticky Note
As written, this requires on the order of 128L companions. It is faster to keep a set of k lists (one list per symbol) where each list contains the offsets where the corresponding symbol has occurred in the prior 128 symbols. When a symbol is encountered, you can then choose the corresponding list and then increment the scoreboard counters that correspond to the list entries.
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See 6.3.7 for notes on the final calculation.
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where 

𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

and x = x10, derived by iterating the recurrence relation 

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1 

for j from 1 to 10, and x0=1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 using the logarithm of these 
equations is robust against overflows. Table 3 in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

7. The min-entropy is the negative logarithm of the greater performance metric

min-entropy =  −log2(max(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,
1
𝑘𝑘

)). 

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2), so that L = 10 and N = 9. For the purpose of 
this example, suppose that D = 3 (instead of 128). The following table shows the values in step 3. 

i lag Winner 
(step 3b) 

prediction si correcti-1 scoreboard 
(step 3d) 

2 (2, --, --) 1 2 1 0 (0, 0, 0) 
3 (1, 2, --) 1 1 3 0 (0, 0, 0) 
4 (3, 1, 2) 1 3 2 0 (0, 0, 1) 
5 (2, 3, 1) 3 1 1 1 (0, 0, 2) 
6 (1, 2, 3) 3 3 3 1 (0, 0, 3) 
7 (3, 1, 2) 3 2 1 0 (0, 1, 3) 
8 (1, 3, 1) 3 1 3 0 (0, 2, 3) 
9 (3, 1, 3) 3 3 1 0 (0, 3, 3) 
10 (1, 3, 1) 2 3 2 0 (0, 3, 3) 

After all of the predictions are made, correct = (0, 0, 0, 1, 1, 0, 0, 0, 0). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.2222, 
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = 0.6008, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.1167, and the resulting min-entropy estimate is 0.735.  

6.3.9 The MultiMMC Prediction Estimate 

The MultiMMC predictor is composed of multiple Markov Model with Counting (MMC) 
subpredictors. Each MMC predictor records the observed frequencies for transitions from one 
output to a subsequent output (rather than the probability of a transition, as in a typical Markov 
model), and makes a prediction, based on the most frequently observed transition from the current 
output. MultiMMC contains D MMC subpredictors running in parallel, one for each depth from 1 
to D. For example, the MMC with depth 1 creates a first-order model, while the MMC with depth 
D creates a Dth-order model. MultiMMC keeps a scoreboard that records the number of times that 
each MMC subpredictor was correct, and uses the subpredictor with the most correct predictions 
to predict the next value.  

jhill
Highlight
This predictor benefits from using Aaron Kauffer's clever restructuring of the predictor code that interleaves the prediction and increment; see the NIST tool's predictor code for details.
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Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 

1. Let D = 16, and N = L − 2. Let subpredict be a list of D values, each initialized to Null. Let
correct be an array of N values, each initialized to 0. Let entries be an array of D values,
each initialized to 0, and let maxEntries = 100 000.

2. For d = 1 to D, let Md be a set of counters, where Md[x, y] denotes the number of observed
transitions from output x to output y for the d th-order MMC.

3. Let scoreboard be a list of D counters, each initialized to 0. Let winner = 1.
4. For i = 3 to L:

a. For d = 1 to D:

i. If d < i−1:

1. If [(si-d-1, …,si-2), si-1] is in Md,  increment Md[(si-d−1, …,si−2), si−1] by
1.

2. Else if entriesd < maxEntries, add a counter for [(si−d−1, …,si−2), si− 1]
to the set, let Md[(si−d−1,…,si−2), si− 1] = 1 and increment entriesd by
1.

b. For d = 1 to D:
i. If d < i, find the y value that corresponds to the highest Md[(si-d,…,si-1), y]

value, and denote that y as ymax. If there is a tie, let ymax be the greatest y
in the tie. Let subpredictd = ymax. If all possible values of Md [(si-d,…,si-1),
y] are 0, then let subpredictd = Null.

c. Let prediction = subpredictwinner.
d. If (prediction = si), let correcti-2 = 1.
e. Update the scoreboard. For d = 1 to D:

i. If (subpredictd = si)
1. Let scoreboardd = scoreboardd +1.
2. If scoreboardd ≥ scoreboardwinner, let winner = d.

5. Let C be the number of ones in correct.

6. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 % 
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  is calculated as: 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01 

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +  2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1  ), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value. 
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This imposes a data ordering dependency. Any translation needs to preserve order.
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Note that for binary symbols, this can be performed by simply encoding the prior symbols into a string, and then using that string as an index into an array. This is much quicker than using a fancy data structure.
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7. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary search
to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =  
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 × 

1
𝑥𝑥𝑁𝑁+1

 , 

where 

𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

and x = x10, derived by iterating the recurrence relation 

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1 

for j from 1 to 10, and x0=1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 using the logarithm of these 
equations is robust against overflows. Table 3 in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

8. The min-entropy is the negative logarithm of the greater performance metric

min-entropy =  −log2(max(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐,
1
𝑘𝑘

)). 

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1), so that L = 9 and N = 7. For the purpose of this 
example, further suppose that D = 3 (instead of 16). After each iteration of step 4 is completed, 
the values are:  

i subpredict scoreboard 
(step 4c) 

Winner 
(step 4c) 

prediction si correcti-2 scoreboard 
(step 4e) 

3 (Null, Null, Null) (0, 0, 0) 1 Null 3 0 (0, 0, 0) 
4 (Null, Null, Null) (0, 0, 0) 1 Null 2 0 (0, 0, 0) 
5 (1, Null, Null) (0, 0, 0) 1 1 1 1 (1, 0, 0) 
6 (3, 3, Null) (1, 0, 0) 1 3 3 1 (2, 1, 0) 
7 (2, 2, 2) (2, 1, 0) 1 2 1 0 (2, 1, 0) 
8 (3, Null, Null) (2, 1, 0) 1 3 3 1 (3, 1, 0) 
9 (2, 2, Null) (3, 1, 0) 1 2 1 0 (3, 1, 0) 

Let {x→y:c} denote a nonzero count c for the transition from x to y. Models M1, M2, and M3 are 
shown below after step 4a (the model update step) for each value of i. 
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i M1 M2 M3 
3 {2→1:1} -- -- 
4 {1→3:1}, 

{2→1:1} 
{(2, 1)→3:1} -- 

5 {1→3:1}, 
{2→1:1}, 
{3→2:1} 

{(1, 3)→2:1}, 
{(2, 1)→3:1} 

{(2, 1, 3)→2:1} 

6 {1→3:1}, 
{2→1:2}, 
{3→2:1} 

{(1, 3)→2:1}, 
{(2, 1)→3:1}, 
{(3, 2)→1:1} 

{(1, 3, 2)→1:1}, 
{(2, 1, 3)→2:1} 

7 {1→3:2}, 
{2→1:2}, 
{3→2:1} 

{(1, 3)→2:1}, 
{(2, 1)→3:2}, 
{(3, 2)→1:1} 

{(1, 3, 2)→1:1}, 
{(2, 1, 3)→2:1}, 
{(3, 2, 1)→3:1} 

8 {1→3:2}, 
{2→1:2}, 
{3→1:1}, 
{3→2:1} 

{(1, 3)→1:1}, 
{(1, 3)→2:1}, 
{(2, 1)→3:2}, 
{(3, 2)→1:1} 

{(1, 3, 2)→1:1}, 
{(2, 1, 3)→1:1}, 
{(2, 1, 3)→2:1}, 
{(3, 2, 1)→3:1} 

9 {1→3:3}, 
{2→1:2}, 
{3→1:1}, 
{3→2:1} 

{(1, 3)→1:1}, 
{(1, 3)→2:1}, 
{(2, 1)→3:2}, 
{(3, 1)→3:1}, 
{(3, 2)→1:1} 

{(1, 3, 1)→3:1}, 
{(1, 3, 2)→1:1}, 
{(2, 1, 3)→1:1}, 
{(2, 1, 3)→2:1}, 
{(3, 2, 1)→3:1} 

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 0). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.4286, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ =
0.9490, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.1307, and the resulting min-entropy estimate is 0.0755. 

6.3.10 The LZ78Y Prediction Estimate 

The LZ78Y predictor is loosely based on LZ78 encoding with Bernstein's Yabba scheme [Sal07] 
for adding strings to the dictionary.  The predictor keeps a dictionary of strings that have been 
added to the dictionary so far, and continues adding new strings to the dictionary until the 
dictionary has reached its maximum capacity.  Each time that a sample is processed, every 
substring in the most recent B samples updates the dictionary or is added to the dictionary. 

Given the input S = (s1, …, sL), where si ϵ A = {x1, …, xk}, 

1. Let B = 16, and N = L – B – 1. Let correct be an array of N Boolean values, each initialized
to 0.  Let maxDictionarySize = 65 536.

2. Let D be an empty dictionary. Let dictionarySize = 0.
3. For i = B+2 to L:

a. For j=B down to 1:
i. If (si-j-1, …, si-2) is not in D, and dictionarySize < maxDictionarySize:

jhill
Highlight
This predictor benefits from using Aaron Kauffer's clever restructuring of the predictor code that interleaves the prediction and increment; see the NIST tool's predictor code for details.
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Note that for binary symbols, this can be performed by simply encoding the prior symbols into a string, and then using that string as an index into an array. This is much quicker than using a fancy data structure.
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1. Let D[si-j-1, …, si-2] be added to the dictionary.
2. Let D[si-j-1, …, si-2][si-1] = 0.
3. dictionarySize = dictionarySize + 1

ii. If (si-j-1, … , si-2) is in D,
1. Let D[si-j-1, …, si-2][si-1] = D[si-j-1, … ,si-2][si-1] + 1.

b. Use the dictionary to predict the next value, si. Let prediction = Null, and let
maxcount = 0. For j = B down to 1:

i. Let prev = (si−j, … si−1).
ii. If prev is in the dictionary, find the y ϵ {x1, …,xk} that has the highest

D[prev][y] value. In the event of a tie, let the y be the symbol with the higher
byte value. For example, if D[prev][1] and D[prev][5] both have the highest
value, then y = 5.

iii. If D[prev][y] > maxcount:
1. prediction = y.
2. maxcount = D[prev][y].

c. If (prediction = si), let correcti−B−1 = 1.

4. Calculate the predictor’s global performance as 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  = 𝐶𝐶
𝑁𝑁

 . The upper bound of the 99 % 
confidence interval on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, denoted 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  is calculated as: 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ = �
1 − 0.01 

1
𝑁𝑁, if 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0,

min (1,𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +  2.576�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �1−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑁𝑁−1  ), otherwise

where 2.576 corresponds to the 𝑍𝑍(1−0.005) value. 

5. Calculate the predictor’s local performance, based on the longest run of correct predictions.
Let r be one greater than the length of the longest run of ones in correct. Use a binary
search to solve the following for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:

0.99 =  
1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥

(𝑟𝑟 + 1 − 𝑟𝑟𝑟𝑟)𝑞𝑞
 × 

1
𝑥𝑥𝑁𝑁+1 

 , 

where 𝑞𝑞 = 1 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and x = x10, derived by iterating the recurrence relation 

𝑥𝑥𝑗𝑗 = 1 + 𝑞𝑞𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟 𝑥𝑥𝑗𝑗−1𝑟𝑟+1 

for j from 1 to 10, and x0 = 1. Note that solving for 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  using the logarithm of these 
equations is robust against overflows. Table 3 given in Appendix G.2 provides some pre-
calculated values of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

6. The min-entropy is the negative logarithm of the greater performance metric

jhill
Sticky Note
Insert, "Let C be the number of ones in the array 'correct.'”
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This imposes a data ordering dependency. Any translation needs to preserve order.
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See 6.3.7 for notes on the final calculation.
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min-entropy =  −log2 �max �𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎,
1
𝑘𝑘
��. 

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2), and L = 13. For the purpose of this 
example, suppose that B = 4 (instead of 16), then N = 8. 

i Add to D prev Max D[prev] entry prediction si correcti-B-1 

6 D[2, 1, 3, 2][1]  
D[1, 3, 2][1]  
D[3, 2][1]  
D[2][1] 

(1, 3, 2, 1) Null Null 3 0 
(3, 2, 1) Null 
(2, 1) Null 
(1) Null 

7 D[1, 3, 2, 1][3] 
D[3, 2, 1][3] 
D[2, 1][3] 
D[1][3] 

(3, 2, 1, 3) Null Null 1 0 
(2, 1, 3) Null 
(1, 3) Null 
(3) Null 

8 D[3, 2, 1, 3][1] 
D[2, 1, 3][1] 
D[1, 3][1] 
D[3][1] 

(2, 1, 3, 1) Null 3 3 1 
(1, 3, 1) Null 
(3, 1) Null 
(1) 3 

9 D[2, 1, 3, 1][3] 
D[1, 3, 1][3] 
D[3, 1][3] 
D[1][3] 

(1, 3, 1, 3) Null 1 1 1 
(3, 1, 3) Null 
(1, 3) 1 
(3) 1 

10 D[1, 3, 1, 3][1] 
D[3, 1, 3][1] 
D[1, 3][1] 
D[3][1] 

(3, 1, 3, 1) Null 3 2 0 
(1, 3, 1) 3 
(3, 1) 3 
(1) 3 

11 D[3, 1, 3, 1][2] 
D[1, 3, 1][2] 
D[3, 1][2] 
D[1][2] 

(1, 3, 1, 2) Null 1 1 1 
(3, 1, 2) Null 
(1, 2) Null 
(2) 1 

12 D[1, 3, 1, 2][1] 
D[3, 1, 2][1] 
D[1, 2][1] 
D[2][1] 

(3, 1, 2, 1) Null 3 3 1 
(1, 2, 1) Null 
(2, 1) 3 
(1) 3 

13 D[3, 1, 2, 1][3] 
D[1, 2, 1][3] 
D[2, 1][3] 
D[1][3] 

(1, 2, 1, 3) Null 1 2 0 
(2, 1, 3) 1 
(1, 3) 1 
(3) 1 

 

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 1, 0). Then, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.5, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ =
0.9868, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.1229, and the resulting min-entropy estimate is 0.0191. 
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6.4 Reducing the Symbol Space  

It is often the case that the data requirements for a test on noise source samples depends on the 
number of possible different symbols from the noise source (i.e., the size of the alphabet A, denoted 
k). For example, consider two different noise sources. The first source outputs 4-bit samples, and 
thus has a possible total of 24 = 16 different symbols, and the second source outputs 32-bit samples, 
for a possible total of 232 different symbols.  

In many cases, the variability in the output that contributes to the entropy in a sample may be 
concentrated among some portion of the bits in the sample. For example, consider a noise source 
that outputs 32-bit high-precision clock samples that represent the time it takes to perform some 
system process. Suppose that the bits in a sample are ordered in the conventional way, so that the 
lower-order bits of the sample correspond to the higher resolution measurements of the clock. It is 
easy to imagine that in this case, the low-order bits would contain most of the variability. In fact, 
it would seem likely that some of the high-order bits may be constantly 0. For this example, it 
would be reasonable to truncate the 32-bit sample to a 4-bit string by taking the lower 4 bits, and 
perform the tests on the 4-bit strings. Of course, it must be noted that in this case, only a maximum 
of 4  bits of min-entropy per sample could be credited to the noise source. 

The algorithm given below provides an example of a method for mapping the n-bit samples, 
collected as specified in Section 3.1.1, to m-bit samples, where n ≥ m. The resulting strings can be 
used as input to tests that may have infeasible data requirements if the mapping were not 
performed. Note that after the mapping is performed, the maximum amount of entropy possible 
per n-bit sample is m bits. 

Given a noise source that produces n-bit samples, where n exceeds the bit-length that can be 
handled by the test, the submitter may provide the tester with an ordered ranking of the bits in the 
n-bit samples (see Section 3.2.2). The rank of ‘1’ corresponds to the bit assumed to be contributing 
the most entropy to the sample, and the rank of n corresponds to the bit contributing the least 
amount. If multiple bits contribute the same amount of entropy, the ranks can be assigned 
arbitrarily among those bits. The following algorithm, or its equivalent, is used to assign ranks. 

Input: A noise source and corresponding statistical model with samples of the form X = a1a2…an, 
where each ai is a bit. 

Output: An ordered ranking of the bits a1 through an, based on the amount of entropy that each 
bit is assumed to contribute to the noise source outputs. 

1. Set M = {a1, a2, …, an}. 
2. For i = 1 to n: 

a. Choose an output bit a from M such that no other bit in M is assumed to 
contribute more entropy to the noise source samples than a. 

b. Set the ranking of a to i. 
c. Remove a from M. 

Given the ranking, n-bit samples are mapped to m-bit samples by simply taking the m-bits of 
greatest rank in order (i.e., bit 1 of the m-bit string is the bit from an n-bit sample with rank 1, bit 
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2 of the m-bit string is the bit from an n-bit sample with rank 2, … and bit m of the m-bit string is 
the bit from an n-bit sample with rank m). 

Note that for the estimators in Section 6, a reference to a sample in the dataset will be interpreted 
as a reference to the m-bit subsets of the sample when the test necessitates processing the dataset 
as specified in this section. 

The submitter is allowed to use an alternative method to reduce symbol size. The submitter shall 
provide a description of the alternative method they use and an argument as to why this method is 
more suitable for the noise source shall be provided. 

jhill
Sticky Note
Note that grouping into groups of nearby symbols is an alternate way of accomplishing this reduction. This is specifically useful if large scale changes are more important than the low level noise. (e.g., a nice quantum source making large scale changes, as compared to low level electrical noise.)
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Acronyms  

Selected acronyms and abbreviations used in this paper are defined below. 

AES Advanced Encryption Standard 

API Application Programming Interface 

ANS  American National Standard 

CAVP Cryptographic Algorithm Validation Program 

CBC-MAC Cipher Block Chaining Message Authentication Code  

CMVP Cryptographic Module Validation Program 

DRBG Deterministic Random Bit Generator 

FIPS Federal Information Processing Standard 

HMAC Hash-based Message Authentication Code 

IID Independent and Identically Distributed 

LRS Longest Repeated Substring 

NIST National Institute of Standards and Technology 

NRBG Non-deterministic Random Bit Generator 

NVLAP National Voluntary Laboratory Accreditation Program 

RAM Random Access Memory 

RBG Random Bit Generator 

SP NIST Special Publication 
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Glossary 

Alphabet A finite set of two or more symbols. 

Alphabet size The number of distinct symbols that the noise source produces. 

Algorithm A clearly specified mathematical process for computation; a set 
of rules that, if followed, will give a prescribed result.  

Approved FIPS-approved or NIST-Recommended.  

Array A fixed-length data structure that stores a collection of elements, 
where each element is identified by its integer index. 

Assessment (of entropy)  
An evaluation of the amount of entropy provided by a (digitized) 
noise source and/or the entropy source that employs it.  

Biased  
A value that is chosen from an alphabet space is said to be biased 
if one value is more likely to be chosen than another value. 
(Contrast with unbiased.) 

Binary data (from a 
noise source) 

Digitized output from a noise source that consists of a single bit; 
that is, each sampled output value is represented as either 0 or 1. 

Bitstring 
An ordered sequence of 0’s and 1’s. The leftmost bit is the most 
significant bit. 

Collision An instance of duplicate sample values occurring in a dataset.  

Conditioning (of noise 
source output) 

A method of processing the raw data to reduce bias and/or ensure 
that the entropy rate of the conditioned output is no less than some 
specified amount.  

Confidence interval 

An interval estimate [low, high] of a population parameter. If the 
population is repeatedly sampled, and confidence intervals are 
computed for each sample with significance level α, 
approximately 100(1− α) % of the intervals are expected to 
contain the true population parameter. 

Continuous test 

A type of health test performed within an entropy source on the 
output of its noise source in order to gain some level of assurance 
that the noise source is working correctly, prior to producing each 
output from the entropy source.  

Consuming application 
(for an RBG) 

An application that uses the output from an approved random bit 
generator. 

Dataset A sequence of sample values. (See Sample.) 
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Deterministic Random 
Bit Generator (DRBG) 

An RBG that includes a DRBG mechanism and (at least initially) 
has access to a source of entropy input. The DRBG produces a 
sequence of bits from a secret initial value called a seed, along 
with other possible inputs. A DRBG is often called a 
Pseudorandom Number (or Bit) Generator. 

Developer 
The party that develops the entire entropy source or the noise 
source. 

Dictionary 
A dynamic-length data structure that stores a collection of 
elements or values, where a unique label identifies each element. 
The label can be any data type. 

Digitization The process of generating bits from the noise source. 

DRBG mechanism 

The portion of an RBG that includes the functions necessary to 
instantiate and uninstantiate the RBG, generate pseudorandom 
bits, (optionally) reseed the RBG and test the health of the DRBG 
mechanism. Approved DRBG mechanisms are specified in SP 
800-90A.

Entropy 
A measure of the disorder, randomness or variability in a closed 
system. Min-entropy is the measure used in this 
Recommendation. 

Entropy rate 

The rate at which a digitized noise source (or entropy source) 
provides entropy; it is computed as the assessed amount of 
entropy provided by a bitstring output from the source, divided by 
the total number of bits in the bitstring (yielding the assessed bits 
of entropy per output bit). This will be a value between zero (no 
entropy) and one. 

Entropy source 
The combination of a noise source, health tests, and an optional 
conditioning component that produce random bitstrings to be 
used by an RBG.  

Estimate 
The estimated value of a parameter, as computed using an 
estimator. 

Estimator A technique for estimating the value of a parameter. 

False positive 

An erroneous acceptance of the hypothesis that a statistically 
significant event has been observed. This is also referred to as a 
type 1 error. When “health-testing” the components of a device, 
it often refers to a declaration that a component has malfunctioned 
– based on some statistical test(s) – despite the fact that the
component was actually working correctly.
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Global performance 
metric 

For a predictor, the number of accurate predictions over a long 
period. 

Health testing 
Testing within an implementation immediately prior to or during 
normal operation to determine that the implementation continues 
to perform as implemented and as validated. 

Independent 

Two random variables X and Y are independent if they do not 
convey information about each other. Receiving information 
about X does not change the assessment of the probability 
distribution of Y (and vice versa). 

Independent and 
Identically Distributed 
(IID) 

A quality of a sequence of random variables for which each 
element of the sequence has the same probability distribution as 
the other values, and all values are mutually independent. 

List 
A dynamic-length data structure that stores a sequence of values, 
where each value is identified by its integer index.  

Local performance 
metric 

For a predictor, the length of the longest run of correct predictions 

Markov model 

A model for a probability distribution where the probability that 
the ith element of a sequence has a given value depends only on 
the values of the previous n elements of the sequence. The model 
is called an nth order Markov model. 

Min-entropy 

The min-entropy (in bits) of a random variable X is the largest 
value m having the property that each observation of X provides 
at least m bits of information (i.e., the min-entropy of X is the 
greatest lower bound for the information content of potential 
observations of X). The min-entropy of a random variable is a 
lower bound on its entropy. The precise formulation for min-
entropy is (log2 max pi) for a discrete distribution having 
probabilities p1, ...,pk. Min-entropy is often used as a worst-case 
measure of the unpredictability of a random variable. 

Narrowest internal 
width 

The maximum amount of information from the input that can 
affect the output. For example, if f(x) = SHA-1(x) || 01, and x 
consists of a string of 1000 binary bits, then the narrowest internal 
width of f(x) is 160 bits (the SHA-1 output length), and the output 
width of f(x) is 162 bits (the 160 bits from the SHA-1 operation, 
concatenated by 01). 

Noise source 
The component of an entropy source that contains the non-
deterministic, entropy-producing activity (e.g., thermal noise or 
hard drive seek times). 
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Non-deterministic 
Random Bit Generator 
(NRBG) 

An RBG that always has access to an entropy source and (when 
working properly) produces outputs that have full entropy (see SP 
800-90C). Also called a true random bit (or number) generator
(Contrast with a DRBG).

Non-physical non-
deterministic random 
bit generator 

An entropy source that does not use dedicated hardware but uses 
system resources (RAM content, thread number etc.) or the 
interaction of the user (time between keystrokes etc.). 

On-demand test 
A type of health test that is available to be run whenever a user or 
a relying component requests it. 

Output space 
The set of all possible distinct bitstrings that may be obtained as 
samples from a digitized noise source. 

P-value
The probability that the chosen test statistic will assume values 
that are equal to or more extreme than the observed test statistic 
value, assuming that the null hypothesis is true.  

Predictor 
A function that predicts the next value in a sequence, based on 
previously observed values in the sequence. 

Probability distribution 
A function that assigns a probability to each measurable subset of 
the possible outcomes of a random variable.  

Probability model A mathematical representation of a random phenomenon. 

Pseudorandom 

A deterministic process (or data produced by such a process) 
whose output values are effectively indistinguishable from those 
of a random process as long as the internal states and internal 
actions of the process are unknown. For cryptographic purposes, 
“effectively indistinguishable” means “not within the 
computational limits established by the intended security 
strength.” 

Random Bit Generator 
(RBG) 

A device or algorithm that outputs a random sequence that is 
effectively indistinguishable from statistically independent and 
unbiased bits. An RBG is classified as either a DRBG or an 
NRBG. 

Raw data Digitized output of the noise source. 

Physical non-
deterministic random 
bit generator 

An entropy source that uses dedicated hardware or uses a physical 
experiment (noisy diode(s), oscillators, event sampling like 
radioactive decay, etc.) 
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Run (of output 
sequences) 

A sequence of identical values. 

Sample 

An observation of the raw data output by a noise source. Common 
examples of output values obtained by sampling are single bits, 
single bytes, etc. (The term “sample” is often extended to denote 
a sequence of such observations; this Recommendation will 
refrain from that practice.) 

Security boundary 

A conceptual boundary that is used to assess the amount of 
entropy provided by the values output from an entropy source. 
The entropy assessment is performed under the assumption that 
any observer (including any adversary) is outside of that 
boundary. 

Sequence An ordered list of quantities. 

Shall 
The term used to indicate a requirement that needs to be fulfilled 
to claim conformance to this Recommendation. Note that shall 
may be coupled with not to become shall not.  

Should 
The term used to indicate an important recommendation. Ignoring 
the recommendation could result in undesirable results. Note that 
should may be coupled with not to become should not. 

Start-up testing 

A suite of health tests that are performed every time the entropy 
source is initialized or powered up. These tests are carried out on 
the noise source before any output is released from the entropy 
source.  

Stochastic model 

A stochastic model is a mathematical description (of the relevant 
properties) of an entropy source using random variables. A 
stochastic model used for an entropy source analysis is used to 
support the estimation of the entropy of the digitized data and 
finally of the raw data. In particular, the model is intended to 
provide a family of distributions, which contains the true (but 
unknown) distribution of the noise source outputs. Moreover, the 
stochastic model should allow an understanding of the factors that 
may affect the entropy. The distribution of the entropy source 
needs to remain in the family of distributions, even if the quality 
of the digitized data goes down. 

Submitter 

The party that submits the entire entropy source and output from 
its components for validation. The submitter can be any entity that 
can provide validation information as required by this 
Recommendation (e.g., developer, designer, vendor or any 
organization).  
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Symbol The value of the noise source output (i.e., sample value). 

Testing laboratory An accredited cryptographic security testing laboratory. 

Type I error Incorrectly rejection of a true null hypothesis.  

Unbiased 
A value that is chosen from a sample space is said to be unbiased 
if all potential values have the same probability of being chosen. 
(Contrast with biased.) 
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 Min-Entropy and Optimum Guessing Attack Cost 

Suppose that an adversary wants to determine at least one of several secret values, where each 
secret value is independently chosen from a set of M possibilities, with probability distribution P 
= {p1, p2, …, pM}. Assume that these probabilities are sorted so that p1 ≥ p2 ≥ …≥ pM . Consider a 
guessing strategy aimed at successfully guessing as many secret values as possible. The adversary's 
goal would be to minimize the expected number of guesses per successful recovery. Such a strategy 
would consist of guessing a maximum of k possibilities for a given secret value, moving on to a 
new secret value when either a guess is correct, or k incorrect guesses for the current value have 
been made. In general, the optimum value of k can be anywhere in the range 1 ≤ k ≤ M, depending 
on the probability distribution P. Note that when k = M, the Mth guess is considered a valid (though 
trivial) guess. Regardless of the value of k chosen, it is clear that the k guesses selected for a given 
secret value should be the k most likely possible values, in decreasing order of probability. 

The expected work per success can be computed for this attack as follows. For 1 ≤ j ≤ k – 1, the 
attacker will make exactly j guesses if the secret value is the jth most likely value, an event having 
probability pj. The attacker will make exactly k guesses if the secret value is not any of the k – 1 
most likely values, an event having probability 1 − ∑ 𝑝𝑝𝑗𝑗𝑘𝑘−1

𝑗𝑗=1 . Thus, the expected number of guesses 
for the attack is given by the following: 

𝑝𝑝1 + 2𝑝𝑝2 + ⋯+ (𝑘𝑘 − 1)𝑝𝑝𝑘𝑘−1 + 𝑘𝑘 �1 −�𝑝𝑝𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1

�. 

Since this attack will be successful if and only if the secret value is one of the k most likely 
possibilities, which is the case with probability ∑ 𝑝𝑝𝑗𝑗𝑘𝑘

𝑗𝑗=1 , the expected number of times the attack 
must be performed until the first success is the reciprocal of this probability. Multiplying this 
reciprocal by the expected number of guesses per attack gives the following as the expected work 
per success: 

𝑊𝑊𝑘𝑘(𝑃𝑃) =
𝑝𝑝1 + 2𝑝𝑝2 + ⋯+ (𝑘𝑘 − 1)𝑝𝑝𝑘𝑘−1 + 𝑘𝑘 �1 − ∑ 𝑝𝑝𝑗𝑗𝑘𝑘−1

𝑗𝑗=1 �
∑ 𝑝𝑝𝑗𝑗𝑘𝑘
𝑗𝑗=1

. 

It is not critical to determine the value k* that minimizes 𝑊𝑊𝑘𝑘(𝑃𝑃), since the min-entropy of P leads 
to an accurate approximation (and sometimes the exact value) of 𝑊𝑊𝑘𝑘∗(𝑃𝑃). Stated more precisely, 
𝑊𝑊1(𝑃𝑃) = 1

𝑝𝑝1
 is an upper bound of 𝑊𝑊𝑘𝑘∗(𝑃𝑃), and it can be shown that 𝑊𝑊𝑘𝑘(𝑃𝑃)  ≥  1

2𝑝𝑝1
+ 1

2
 for all k 

such that 1 ≤ k ≤ M. Since the min-entropy of P is −  log2(𝑝𝑝1), these two bounds imply that the 
error between the min-entropy of P and log2(𝑊𝑊𝑘𝑘∗(𝑃𝑃)) can be bounded as follows: 

0 ≤  − log2 𝑝𝑝1 − log2�𝑊𝑊𝑘𝑘∗(𝑃𝑃)� ≤  1 −  log2(𝑝𝑝1 + 1). 

Notice that since 1
𝑀𝑀

 ≤  𝑝𝑝1  ≤ 1, the upper bound on the error approaches 0 as 𝑝𝑝1 → 1, and 

alternatively, this bound approaches 1 as 𝑀𝑀 → ∞ and 𝑝𝑝1 →  1
𝑀𝑀

.  In other words, the min-entropy of 

jhill
Sticky Note
In particular, this is more straight forward if one imagines that an attacker has access to a large number of devices. If one wants to control the proportion of these devices can be broken by the attacker guessing the most likely symbol, then bounding the min entropy is the natural way to do so.
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P either corresponds to the exact expected work, measured in bits, needed to perform the optimum 
guessing attack or over-estimates this work by at most one bit. 

In order to prove the claim that 𝑊𝑊𝑘𝑘(𝑃𝑃)  ≥  1
2𝑝𝑝1

+ 1
2
, for 1 ≤ k ≤ M, rewrite the expected work per 

success as 

𝑊𝑊𝑘𝑘(𝑃𝑃) =
1 + (1 − 𝑝𝑝1) + (1 − 𝑝𝑝1 − 𝑝𝑝2) + ⋯+ (1 − 𝑝𝑝1 − 𝑝𝑝2 − ⋯− 𝑝𝑝𝑘𝑘−1)

𝑝𝑝1 + 𝑝𝑝2 + ⋯+ 𝑝𝑝𝑘𝑘
. 

Consider an alternative probability distribution on a set of M possibilities 𝑃𝑃′ =
{𝑝𝑝1,𝑝𝑝1, … ,𝑝𝑝1, 𝑟𝑟, 0, … ,0}, where 𝑝𝑝1 occurs 𝑡𝑡 = � 1

𝑝𝑝1
� times and 𝑟𝑟 = 1 − 𝑡𝑡𝑝𝑝1. It is straightforward to 

see that 𝑊𝑊𝑘𝑘(𝑃𝑃)  ≥ 𝑊𝑊𝑘𝑘(𝑃𝑃′), since each term in the numerator of 𝑊𝑊𝑘𝑘(𝑃𝑃) is at least as large as the 
corresponding term in 𝑊𝑊𝑘𝑘(𝑃𝑃′), and the denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) is at least as large as the 
denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃). 

Now to show that 𝑊𝑊𝑘𝑘(𝑃𝑃′)  ≥  1
2𝑝𝑝1

+ 1
2
. Based on the above formula for 𝑊𝑊𝑘𝑘(𝑃𝑃), for 1 ≤ k ≤ t + 1, 

the numerator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) can be written as 

� (1 − 𝑖𝑖𝑝𝑝1) = 𝑘𝑘 −
𝑘𝑘(𝑘𝑘 − 1)

2
𝑝𝑝1 = 𝑘𝑘𝑝𝑝1 �

1
𝑝𝑝1
−
𝑘𝑘 − 1

2
�

𝑘𝑘−1

𝑖𝑖=0
. 

Consider the following two cases where 1 ≤ k ≤ t and k = t + 1. These are the only cases to check, 
since if M > t + 1, then 𝑊𝑊𝑘𝑘(𝑃𝑃′) = 𝑊𝑊𝑡𝑡+1(𝑃𝑃′) for k > t + 1, because the remaining probabilities are 
all zero. Furthermore, r = 0 if and only if 1

𝑝𝑝1
 is an integer, and when this happens, only the first 

case needs to be addressed since 𝑊𝑊𝑡𝑡+1(𝑃𝑃′) = 𝑊𝑊𝑡𝑡(𝑃𝑃′). 

For 1 ≤ k ≤ t, the denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) = 𝑘𝑘𝑝𝑝1. Then, 

𝑊𝑊𝑘𝑘(𝑃𝑃′) =  
𝑘𝑘𝑝𝑝1 �

1
𝑝𝑝1
− 𝑘𝑘−1

2
�

𝑘𝑘𝑝𝑝1
=

1
𝑝𝑝1
−
𝑘𝑘 − 1

2
, 

≥  
1
𝑝𝑝1
−

1
2

 ��
1
𝑝𝑝1
� − 1� , 

≥
1
𝑝𝑝1
−

1
2

 �
1
𝑝𝑝1
− 1� , 

≥
1

2𝑝𝑝1
+

1
2

 . 

For k = t +1, the denominator of 𝑊𝑊𝑘𝑘(𝑃𝑃′) is tp1+r =1. Let x = 1
𝑝𝑝1
−  � 1

𝑝𝑝1
�, so 0 ≤ x < 1. This implies 

 

𝑊𝑊𝑘𝑘(𝑃𝑃′) =  𝑘𝑘𝑝𝑝1 �
1
𝑝𝑝1
−
𝑘𝑘 − 1

2
� =  ��

1
𝑝𝑝1
� + 1� 𝑝𝑝1 �

1
𝑝𝑝1
−

1
2
�

1
𝑝𝑝1
�� , 
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= �
1
𝑝𝑝1
− 𝑥𝑥 + 1� �

1
2

+
𝑝𝑝1𝑥𝑥

2
� , 

=  
1

2𝑝𝑝1
+

1
2

+
𝑝𝑝1𝑥𝑥(1 − 𝑥𝑥)

2
, 

≥
1

2𝑝𝑝1
+

1
2

. 

Therefore, it has been shown that 𝑊𝑊𝑘𝑘(𝑃𝑃)  ≥  𝑊𝑊𝑘𝑘(𝑃𝑃′)  ≥ 1
2𝑝𝑝1

+ 1
2
 for 1 ≤ k ≤ M. Note that this lower 

bound is sharp, since 𝑊𝑊𝑘𝑘(𝑃𝑃) achieves this value when P is a uniform distribution. 
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The Narrowest Internal Width 

The narrowest internal width of a conditioning component is the minimum number of bits of the 
state that is dependent on the input to the functions, and influences the output of the function 
(across all steps of making up the conditioning function). It can also be considered as the logarithm 
of an upper bound on the number of distinct outputs, based on the size of the internal state.  

Example: Let F(X) be a function defined as follows:  

1. Let h1 be the output of SHA-256(X) truncated to 64 bits. 
2. Return SHA-256(h1|| h1) truncated to 128 bits.    

This function takes an arbitrarily-long input X and will yield 128-bit output value, but its internal 
width is only 64 bits, because the value of the output only depends on the value of 64-bit h1.  
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CBC-MAC Specification 

CBC-MAC using a 128-bit approved block-cipher algorithm is one of the vetted conditioning 
components. This CBC-MAC construction shall not be used for any other purpose than as the 
algorithm for a conditioning component, as specified in Section 3.1.5.1.1. The following notation 
is used for the construction. 

Let E(Key, input_string) represent the approved encryption algorithm, with a Key and an 
input_string as input parameters. The length of the input_string shall be an integer multiple of the 
output length n of the block-cipher algorithm and shall always be the same length (i.e., variable 
length strings shall not be used as input). 

Let n be the length (in bits) of the output block of the approved block cipher algorithm, and let w 
be the number of n-bit blocks in the input_string. 

Let output_string be the n-bit output of CBC-MAC. 

CBC-MAC: 
Input: bitstring Key, input_string. 
Output: bitstring output_string. 
Process: 

1. Let 𝑠𝑠0, 𝑠𝑠1, … 𝑠𝑠𝑤𝑤−1 be the sequence of blocks formed by dividing input string into n-bit
blocks; i.e., each 𝑠𝑠𝑖𝑖 consists of n bits.

2. V = 0.

3. For i = 0 to w − 1
V = E(Key, V ⊕ 𝑠𝑠𝑖𝑖). 

4. Output V as the CBC-MAC output.
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Different Strategies for Entropy Estimation 

Each of the estimation methods presented in Section 6 follows one of two approaches to estimating 
min-entropy. The first approach is based on entropic statistics, first described for IID data in 
[HD12], and later applied to non-IID data [HD12]. The second approach is based on predictors, 
first described in [Kel15]. 

G.1 Entropic Statistics 

The entropic statistics presented in [HD12], each designed to compute a different statistic on the 
samples, provide information about the structure of the data: collision, compression, and Markov. 
While the estimators (except for the Markov) were originally designed for application to 
independent outputs, the tests have performed well when applied to data with dependencies.  

The estimators assume that a probability distribution describes the output of a random noise source, 
but that the probability distribution is unknown. The goal of each estimator is to reveal information 
about the unknown distribution, based on a statistical measurement.  

The collision and compression estimators in Section 6 each solve an equation for an unknown 
parameter, where the equation is different for each estimator. These equations come from the target 
statistic’s expected value using a near-uniform distribution, which provides a lower bound for min-
entropy. A near-uniform distribution is an instance of a one-parameter family of probability 
distributions parameterized by p, Pp: 

𝑃𝑃𝑝𝑝(𝑖𝑖) =  �
𝑝𝑝, if 𝑖𝑖 = 0 

1 − 𝑝𝑝
𝑘𝑘 − 1

, otherwise
 

where k is the number of states in the output space, and 𝑝𝑝 ≥  1−𝑝𝑝
𝑘𝑘−1

, which is the case when  𝑝𝑝 ≥ 1
𝑘𝑘

. 
In other words, one output state has the maximum probability, and the remaining output states are 
equally likely. For more information, see [HD12]. 

G.1.1 Approximation of 𝐅𝐅(𝟏𝟏/𝐳𝐳)  

The function F(1/z), used by the collision estimate (Section 6.3.2), can be approximated by the 
following continued fraction:14 

                                                 

14 Derived from Equation 8.9.2 at http://dlmf.nist.gov/8.9.  

http://dlmf.nist.gov/8.9
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1

𝑧𝑧 +  −𝑘𝑘
1+ 1

𝑧𝑧+ 1−𝑘𝑘
1+ 2

𝑧𝑧+2−𝑘𝑘
1+3…

 

G.2 Predictors 

Shannon first published the relationship between the entropy and predictability of a sequence in 
1951 [Shan51]. Predictors construct models from previous observations, which are used to predict 
the next value in a sequence. The prediction-based estimation methods in this Recommendation 
work in a similar way, but attempt to find bounds on the min-entropy of integer sequences 
generated by an unknown process (rather than the N-gram entropy of English text, as in [Shan51]). 

The predictor approach uses two metrics to produce an estimate. The first metric is based on the 
global performance of the predictor, called accuracy in machine-learning literature. Essentially, a 
predictor captures the proportion of guesses that were correct. This approximates how well one 
can expect a predictor to guess the next output from a noise source, based on the results over a 
long sequence of guesses. The second metric is based on the greatest number of correct predictions 
in a row, which is called the local performance metric. This metric is useful for detecting cases 
where a noise source falls into a highly predictable state for some time, but the predictor may not 
perform well on long sequences. The calculations for the local entropy estimate come from the 
probability theory of runs and recurrent events [Fel50]. For more information about min-entropy 
estimation using predictors, see [Kel15].  

In order to make the predictor estimates lean toward a conservative underestimate of min-entropy, 
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is replaced by 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ , the proportion corresponding to the 99th percentile of the number of 
correct predictions based on the observed number of correct predictions.  Note that the order in 
which correct predictions occur does not influence the min-entropy estimate based on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. For 
example, a predictor could always be correct for the first half of the outputs in a data set, and 
always incorrect for the second half of the outputs.  The min-entropy estimate of this sequence, 
based on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, is half the data length in bits.  On the other hand, for another sequence, the 
predictor could have a 50 % chance of being correct for every sample in this sequence. The min-
entropy estimate of this second sequence, based on 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, is the same as that of the first sequence. 
However, the typical successful prediction run lengths are very different for these two sequences. 
Therefore, the approach takes the local prediction performance into account in order to 
conservatively decrease the min-entropy estimate if the observed local prediction behavior is 
statistically significant, given the global prediction success rate. The predictor estimates 
accomplish this by basing the min-entropy estimate on max (𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏′ ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), where 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the 
successful prediction proportion for which the observed longest run of correct predictions is the 
99th percentile. This is effectively a one-tail hypothesis test that rejects 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  in favor of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 if 
the observed longest run, given a success probability of 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ , is beyond the 99th percentile. 

jhill
Sticky Note
Note that F(1/z) can be calculated using standard scientific programming function calls (just directly calculating the function as specified using a standard function for the incomplete gamma function). In our setting, this isn't necessary; for positive integer k the sum form of the incomplete gamma function is just a polynomial scaled by some elements that cancel in our function (see https://dlmf.nist.gov/8.4#E8 for details). For k=2 (the only value that presently applies) this whole mess simplifies to an unbelievably simple polynomial: F(z) = 2 z^3 + 2 z^2 + z.
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The following table provides pre-calculated values for Plocal for different r (length of the longest 
run of ones +1) values when the length of the input sequence is 1 000 000.  

Table 3  𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 values for different r values when L=1 000 000. 

r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 r 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
1 0.0000 36 0.6157 160 0.9045 370 0.9597 
2 0.0001 37 0.6242 165 0.9074 380 0.9609 
3 0.0022 38 0.6324 170 0.9101 390 0.9619 
4 0.0100 39 0.6402 175 0.9127 400 0.9629 
5 0.0253 40 0.6477 180 0.9152 410 0.9639 
6 0.0468 41 0.6549 185 0.9175 420 0.9648 
7 0.0728 42 0.6619 190 0.9198 430 0.9656 
8 0.1014 43 0.6686 195 0.9219 440 0.9664 
9 0.1313 44 0.6750 200 0.9239 450 0.9672 

10 0.1614 45 0.6812 205 0.9258 460 0.9680 
11 0.1911 46 0.6872 210 0.9276 470 0.9687 
12 0.2200 47 0.6930 215 0.9293 480 0.9694 
13 0.2479 48 0.6986 220 0.9309 490 0.9700 
14 0.2746 49 0.7040 225 0.9325 500 0.9707 
15 0.3000 55 0.7092 230 0.9340 550 0.9735 
16 0.3242 60 0.7328 235 0.9355 600 0.9758 
17 0.3471 65 0.7531 240 0.9369 650 0.9778 
18 0.3688 70 0.7705 245 0.9382 700 0.9795 
19 0.3893 75 0.7858 250 0.9395 750 0.9809 
20 0.4088 80 0.7992 255 0.9407 800 0.9822 
21 0.4272 85 0.8111 260 0.9419 850 0.9833 
22 0.4447 90 0.8217 265 0.9430 900 0.9843 
23 0.4613 95 0.8312 270 0.9441 950 0.9852 
24 0.4770 100 0.8398 275 0.9452 1000 0.9860 
25 0.4919 105 0.8476 280 0.9462 1500 0.9909 
26 0.5060 110 0.8547 285 0.9471 2000 0.9933 
27 0.5195 115 0.8612 290 0.9481 2500 0.9947 
28 0.5323 120 0.8671 295 0.9490 3000 0.9957 
29 0.5445 125 0.8726 300 0.9499 4000 0.9968 
30 0.5561 130 0.8776 310 0.9516 5000 0.9975 
31 0.5672 135 0.8823 320 0.9531 10000 0.9988 
32 0.5778 140 0.8867 330 0.9546 
33 0.5879 145 0.8907 340 0.9560 
34 0.5976 150 0.8945 350 0.9573 
35 0.6068 155 0.8980 360 0.9586 
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1.1 07/18/2018 Joshua E. Hill, PhD Fixed notation issue with L. Noted a further refinement to the 

sum-of-sums term in our final expression. 
 
One significant calculation that (when implemented naively) slows performance of the SP800-90B tests is 
the calculation of the function G within the Compression Estimate. If we take 𝐿𝐿′ = ⌊𝐿𝐿/𝑏𝑏⌋, then this function 
is defined as 

𝐺𝐺(𝑧𝑧) =
1
𝑣𝑣
�  � log2(𝑢𝑢)𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢)

𝑡𝑡

𝑢𝑢=1

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

, 

where 

𝐹𝐹(𝑧𝑧, 𝑡𝑡,𝑢𝑢) = �𝑧𝑧
2(1 − 𝑧𝑧)𝑢𝑢−1 if 𝑢𝑢 < 𝑡𝑡
𝑧𝑧(1 − 𝑧𝑧)𝑡𝑡−1 if 𝑢𝑢 = 𝑡𝑡

 

To do this calculation efficiently, we define a couple of recurrence relations. 
First, define 𝐵𝐵𝑗𝑗 = (1 − 𝑧𝑧)𝑗𝑗−1. This can be defined using a recurrence relation, with 𝐵𝐵1 = 1, and 𝐵𝐵𝑗𝑗+1 =
𝐵𝐵𝑗𝑗(1 − 𝑧𝑧). Similarly, if we denote 𝑎𝑎𝑢𝑢 = log2(𝑢𝑢)(1 − 𝑧𝑧)𝑢𝑢−1, define 

𝐴𝐴𝑘𝑘 = �𝑎𝑎𝑢𝑢

𝑘𝑘−1

𝑢𝑢=1

 

= � log2(𝑢𝑢)𝐵𝐵𝑢𝑢

𝑘𝑘−1

𝑢𝑢=1

 

Likewise, this can be expressed as 𝐴𝐴2 = 0, and 
𝐴𝐴𝑘𝑘+1 = 𝐴𝐴𝑘𝑘 + log2(𝑘𝑘)𝐵𝐵𝑘𝑘. 

 
We now expand our original function: 

𝑣𝑣𝑣𝑣(𝑧𝑧) = �  � log2(𝑢𝑢)𝑧𝑧2(1 − 𝑧𝑧)𝑢𝑢−1
𝑡𝑡−1

𝑢𝑢=1

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

+ � log2(𝑡𝑡)𝑧𝑧(1 − 𝑧𝑧)𝑡𝑡−1 .
𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

 

Using the terms defined above, we then have 

𝐺𝐺(𝑧𝑧) =
1
𝑣𝑣
�𝑧𝑧2 � 𝐴𝐴𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

+ 𝑧𝑧 � log2(𝑡𝑡)𝐵𝐵𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

�. 

The last sum in the brackets is equal to 𝑧𝑧(𝐴𝐴𝐿𝐿+1 − 𝐴𝐴𝑑𝑑+1), so we then have 

𝐺𝐺(𝑧𝑧) =
1
𝑣𝑣
�𝑧𝑧(𝐴𝐴𝐿𝐿′+1 − 𝐴𝐴𝑑𝑑+1) + 𝑧𝑧2 � 𝐴𝐴𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

�. 

This last form makes it clear that we can perform this calculation by computing 𝐴𝐴𝑗𝑗 where 𝑗𝑗 ∈
{1,2, … , 𝐿𝐿′ + 1} and summing as we go. As we are summing a large number of likely small values, it is 
prudent to use some form of compensated addition (e.g., Kahan summation) or arbitrary-precision 
addition to perform this calculation.  
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As a further note, we can rearrange the ordering of the terms in the sum-of-sums, yielding 

� 𝐴𝐴𝑡𝑡

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

= �  �  𝑎𝑎𝑢𝑢

𝑡𝑡−1

𝑢𝑢=1

𝐿𝐿′

𝑡𝑡=𝑑𝑑+1

 

= (𝐿𝐿′ − 𝑑𝑑)�  𝑎𝑎𝑢𝑢

𝑑𝑑

𝑢𝑢=1

+ � (𝐿𝐿′ − 𝑢𝑢) 𝑎𝑎𝑢𝑢

𝐿𝐿′−1

𝑢𝑢=𝑑𝑑+1

 

= (𝐿𝐿′ − 𝑑𝑑)𝐴𝐴𝑑𝑑+1 + � (𝐿𝐿′ − 𝑢𝑢) 𝑎𝑎𝑢𝑢

𝐿𝐿′−1

𝑢𝑢=𝑑𝑑+1

 

Direct calculation of this last form is somewhat less susceptible to the accumulation of floating point error 
than the prior statement. 
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1 The SA and LCP Arrays 
The notion of a Suffix Trie was originally specified in 1973 by Weiner, but the concept didn’t find regular 
use in practice until significant refinement was introduced by Manber and Myers in 1990, and practical 
fast (and eventually fast and asymptotically linear time) algorithms were found in the early 2000s, with 
significant additional refinement continuing until about 2012. These algorithms are presently in heavy use 
within bioinformatics, as they allow for comprehensive analysis of long sequences of symbols (e.g., 
organism genomes). 

For our purposes, we’ll use the following definitions: 

Let 𝑆𝑆 be the (𝐿𝐿 + 1)-string 𝑆𝑆 = (𝑠𝑠1, 𝑠𝑠2 , … , 𝑠𝑠𝐿𝐿, 𝑠𝑠𝐿𝐿+1 = $), where the (𝐿𝐿 + 1)-st element of the string, $, 
denotes a terminator which is considered lexicographically smaller than all other string symbols (we adopt 
this convention for 𝐿𝐿, because only 𝐿𝐿 values are actually free choices). 

Denote the substring of 𝑆𝑆 ranging from 𝑖𝑖 to 𝑗𝑗 as 𝑆𝑆 [ 𝑖𝑖 , 𝑗𝑗 ]. 

The suffix array (SA) of S is defined to be an array of integers providing the starting positions of suffixes 
of S in lexicographical order. 

Let lcp ( 𝑣𝑣 ,𝑤𝑤 ) denote the length of the longest common prefix between two strings, 𝑣𝑣 and 𝑤𝑤.  

The LCP array, 𝐿𝐿𝐿𝐿𝐿𝐿, is the integer array of size n such that 𝐿𝐿𝐿𝐿𝐿𝐿[1] is undefined and 𝐿𝐿𝐿𝐿𝐿𝐿 [𝑖𝑖]  =
 lcp(S[SA[i − 1], 𝐿𝐿 + 1 ], 𝑆𝑆[S𝐴𝐴[𝑖𝑖], 𝐿𝐿 + 1]) for 2 ≤  𝑖𝑖 ≤  𝐿𝐿 + 1. Thus, LCP[ 𝑖𝑖 ] stores the length of the longest 
common prefix of the lexicographically 𝑖𝑖-th smallest suffix and its predecessor in the suffix array. 

 

2 Algorithms for Calculation of the SA and LCP Arrays 
The magical thing is that the SA and LCP arrays can be calculated efficiently and in linear time. This is 
somewhat shocking, as having access to these data structures provides an ability to efficiently perform 
otherwise computationally-intensive string operations. 

There are numerous publicly-specified algorithms for calculation of the SA and LCP arrays.1 

                                                      
1 We’ve experimented with several of the publicly available implementations and our own 
implementations of some of the published approaches and have settled on using libdivsufsort 
(https://github.com/y-256/libdivsufsort) to generate the suffix array. One note on this choice: libdivsufsort 
does not require the addition of a unique terminator character, so its output requires slight adjustment to 
be consistent with the above definitions. 

https://github.com/y-256/libdivsufsort
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Once we have the SA structure, we can induce the corresponding LCP array (there are also some 
versions of the SA generation algorithms that also generate the LCP array).2 

3 The t-Tuple and LRS Estimators 
The t-tuple and LRS estimators both involve extracting information about 𝑗𝑗-tuples within the string for 
various values of 𝑗𝑗. Calculating the 𝑡𝑡-tuple estimate requires finding the counts of the most common 𝑗𝑗-
tuples, which are then stored in the 𝑄𝑄 array. 

The LRS estimate requires iterating over all 𝑗𝑗-tuples that occur in the string for a certain range of values of 
𝑗𝑗, performing a calculation involving the number of such 𝑗𝑗-tuples within the string, and finding the length of 
the longest repeated substring (LRS). 

All of these quantities can be efficiently calculated using an SA and LCP array for the input string. 

4 Calculating the Length of the Longest Repeated Substring 
The length of the longest repeated substring is the largest value present in the LCP array. This can be 
found by just iterating through the LCP array and finding the maximum value. This operation requires 
𝑂𝑂(𝐿𝐿) operations once the LCP array is known (which itself can be an 𝑂𝑂(𝐿𝐿) operation). 

If every symbol within the string is unique, this value will be 0. If the string is 𝐿𝐿 repeats of a single symbol 
followed by the termination symbol, then the length of the LRS is 𝐿𝐿 − 1. As such, the length of the LRS for 
an 𝐿𝐿-element string followed by the termination symbol is in the range [0, 𝐿𝐿 − 1]. 

5 Counting 𝒋𝒋-Tuples 
The first 𝑗𝑗 characters of any string suffix that is at least 𝑗𝑗 elements long (not including the unique 
termination character) is an instance of a 𝑗𝑗-tuple. When the suffixes are sorted (as within the Suffix Array), 
then any repeats of this 𝑗𝑗-tuple must be adjacent to the suffix in question, and the LCP (for the 
corresponding indexes) must be greater than or equal to 𝑗𝑗. 

As such, you can enumerate all 𝑗𝑗-tuples that occur and count the number of times that they occur in the 
string by stepping through the suffix array and determining the number of times this 𝑗𝑗-tuple occurs by 
determining the length of runs where the LCP is greater than or equal to 𝑗𝑗. 

  

                                                      
2 We use Kasai (et al.’s) linear time algorithm to generate the LCP array, given the SA array and the 
original string. 
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The following algorithm enumerates all the 𝑗𝑗-tuples (to find 𝐶𝐶𝑖𝑖 values): 

Given the input where 𝑠𝑠𝑖𝑖 ∈ 𝐴𝐴 = {x1, … , x𝑘𝑘}, and the size of tuples we are looking for is 𝑗𝑗: 

1. Make a new string 𝑆𝑆’ by appending a unique string terminator (that is lexicographically less than 
all symbols in 𝐴𝐴) to 𝑆𝑆, 𝑆𝑆′ = (𝑠𝑠1, 𝑠𝑠2 , … , 𝑠𝑠𝐿𝐿, 𝑠𝑠𝐿𝐿+1 = $). 

2. Generate the SA and LCP arrays for 𝑆𝑆’. 
3. Let 𝑚𝑚 = 1 
4. While 𝑚𝑚 ≤ 𝐿𝐿 + 1, 

a. ℎ = 1 
b. If 𝑆𝑆𝑆𝑆[𝑚𝑚] ≤ 𝐿𝐿 − 𝑗𝑗 + 1, then //This is a j-tuple to count 

i. While 𝑚𝑚 + ℎ ≤ 𝐿𝐿 + 1 AND 𝑗𝑗 ≤ LCP[𝑚𝑚 + ℎ] 
1. ℎ =  ℎ + 1 

ii. 𝐶𝐶𝑖𝑖 =  ℎ for this 𝑗𝑗-tuple. Process as appropriate by retaining the largest such value, 
or integrating the appropriate value into the 𝑃𝑃𝑊𝑊 calculation. 

c. 𝑚𝑚 = 𝑚𝑚 + ℎ 

This runs in 𝑂𝑂(𝐿𝐿) operations. One should clearly only calculate SA and LCP once for a fixed string. There 
are other refinements possible, but the above outlines the basic approach. 

6 References 
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