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NIST Special Publication 800-90B Comments 
Comments  on  the  January  2018  (final)  version of  SP800‐90B 

 

Revision history 
Revision Date Author Description of Change 

1.0 02/21/2018 Joshua E. Hill, PhD 

Ben Jackson, PhD 

Initial release. 

1.1 06/25/2018 Joshua E. Hill, PhD Minor editorial changes. Additional Restart test comment (Comment 
3d). Refinement to comment on Output_Entropy (Comment 5c), 
removal of Comments 5b and 5e, and a new comment on an instance 
where this function is not necessary (Comment 5f). New graph 
showing the problem with XORing ring oscillators (Comment 7b). New 
graph depicting the non-IID assessment distribution for ideal multi-bit 
sources (Figure 6). New section comparing modeled and statistically 
assessed noise sources (Section 4). Added “References” section 
(Section 5). 

1.2 07/18/2018 Joshua E. Hill, PhD Modify comment #1 to reflect our internal process refinement. 
Comment #15 withdrawn. New comment #16 describes a typo in the 
compression test’s G(z). New comment #17 describes an undefined 
behavior in the LZ78Y prediction estimate. 

1.3 10/15/2018 Joshua E. Hill, PhD New comments: 2b (comments on the ambiguity on calculating 
Hbitstring), 12a (which points out that in the goodness-of-fit chi squared 
test expectation is calculated incorrectly when L is not divisible by 10), 
18 (bzip use is incompletely specified), 19 (a simplification of the 
collision estimate’s F function), and 20 (an alternate way of reducing 
the number of symbols). 

1.4 11/26/2018 Joshua E. Hill, PhD New comments: 4b (commenting on the requirement that the input to 
the conditioning function be fixed), 21 (commenting on a faster way to 
conduct permutation tests for data that will ultimately pass), and 22 
(describing a common result for binary searches and the appropriate 
response). Minor update to comment 10b (updated reference to clarify 
Table 2 of SP800-90B). 

1.5 02/26/2019 Joshua E. Hill, PhD New comments: 23 (requesting clarification on the appropriateness of 
persistent state within conditioning components) and 24 (outlining a 
significant speedup for all the prediction estimates). 

1.6 03/25/2019 Joshua E. Hill, PhD Expanded comment: 13 (provided modeling of the impact of a 
modified 2016 Markov estimator in Section 3.4). New comments: 25 
(commenting on the possible difficulty in distinguishing between the 
“digitization process” and the “conditioning component”), and 26 
(commenting on an apparent health test requirements contradiction). 
Added some description of the general approach of establishing 
assessment bounds.  

1.7 05/02/2019 Joshua E. Hill, PhD New comments: 27-29 (commenting on the meaning of various Health 
Test requirements). 

1.8 05/14/2019 Joshua E. Hill, PhD New comment: 30 (commenting on the rationale and testing for an IID 
noise source). Added Section 5, discussing these IID topics. 

1.9 12/13/2019 Joshua E. Hill, PhD New comments: 24(b) 31, 32, and 33. Significant revision to 
comments: 1, 10c, 13, 19, and to Section 5.2.2 (which contains 
several numerical corrections). Some light editorial refinement. 
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1 Introduction 
We would first like to congratulate the authors on the publication of the final SP800-90B 
document. It provides an excellent framework for addressing a very difficult and important 
challenge within many different security evaluation schemes, and we are sure that it will be 
extremely valuable for years to come. 
 
We have some comments on the final document; most of our comments are requests for 
clarification or minor corrections. The two notable exceptions are comments #3 (the Restart 
Sanity Check) and #8 (the requirement for entropy and noise source entropy assessment 
invariance across all expected conditions). We view these two issues as jeopardizing the 
success of the validation program outlined within SP800-90B, because 

 the restart sanity check will erroneously fail certain types of correctly working noise 
sources at a much higher rate than intended (Comment #3), and 

 entropy and noise sources are expected to meet requirements that preclude almost all 
commercially produced noise/entropy sources (Comment #8). 

 
We also outline a series of results that demonstrate that most of the statistical tests specified 
work as we expected (with the exception of the Restart Sanity Check, as mentioned above), 
provide examples of the tests assessing data produced from a variety of simulated results, and 
provide modeled min-entropy results for comparison. 
 

2 Comments 
Our comments on the final SP800-90B requirements are: 

1. In general, our existing assessment process uses much more data than is requested in 
SP800-90B; as is clear in the graphs that follow, data sets from a noise source with fixed 
entropy-relevant parameters have min entropy assessments that conform to some 
underlying (noise-source dependent) distribution. A single value taken from that 
distribution doesn’t tell the tester a great deal about the underlying distribution, but 
iterated assessment can. Our current practice is to request at least 100,000,000 
samples and break this data into at least 100 1,000,000-sample sets. We independently 
assess each of the data sets. For all the estimators that produce an assessment using a 
calculated confidence interval, we calculate the median of the assessments produced by 
that estimator. For the Markov estimator (the only estimator whose assessment is not 
dominantly created using a constructed 99% confidence interval) we take the 0.5th 
percentile value of the assessments (i.e., the lower bound of a 99% confidence interval). 
We then use bootstrapping to establish a 99% confidence interval for the selected 
percentiles for each set of the produced estimator assessments; the produced lower 
bootstrap confidence interval bound is taken as the overall estimator-specific min 
entropy assessment. The overall min entropy assessment for the noise source 
(integrating all the estimators’ assessments) is then the minimum of the produced overall 
estimator-specific min entropy assessments. 
 
For most of the estimators, we use the median for three reasons: 

a. All of the estimators where we use the median apply a confidence interval bound 
internally. As a result, the final assessment of our SP800-90B assessment 
procedure (which is the minimum of all of the included estimators) already 
represents the expected lower assessment bound of a 99% confidence interval. 
If our assessment approach instead found the 99% confidence interval lower 
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bound for estimators that already attempted to establish lower bounds, then the 
resulting assessment would effectively be the lower bound of a much larger 
confidence interval (something like the lower bound of a 99.99% confidence 
interval), which is inconsistent with the evaluation strategy of SP800-90B. 

b. Taking a low percentile of the SP800-90B assessments as the final assessment 
(which is the same as taking the minimum result for small data sets) effectively 
penalizes vendors who provide more data. The SP800-90B document requires 
only 1,000,000 samples for the principal non-IID testing, but more data can yield 
more meaningful results. Statistical evaluation procedures should be designed to 
yield a structure wherein vendors naturally benefit from more meaningful testing, 
thus incentivizing the vendor to provide larger data sets. 

c. No single value can completely describe the behavior of a distribution, but the 
median conveys an important characteristic of that distribution. A median of a 
distribution is any value that minimizes the ℓଵ norm, that is, if we have a set of 
assessments ܣ, then a median ݏ minimizes the sum 

෍|ݏ െ |ݔ
௫∈஺

, 

and thus also minimizes the expected distance between the value ݏ and a 
randomly selected value from our distribution. In this way, we can think of the 
median as a sort of “anticipated result” for this noise source and estimation 
procedure. 

 
The Markov estimator (whose assessment is not conservative in this way) gets an 
empirical confidence interval in this approach, so the results of this testing make the 
ultimate Markov estimator result directly comparable to the rest of the estimator results 
(which is not the case using the current estimator construction). 
 
This practice yields a more consistent and repeatable value than simply using the result 
of a single assessment. We occasionally encounter products that produce data at such a 
slow rate that this process isn’t feasible, at which point we can easily perform reduced 
testing (such assessments are still useful, but less meaningful). We have not 
encountered any vendor who was unable to produce at least several sets of 1,000,000 
noise samples. We encourage you to refine this document so that such an assessment 
strategy is explicitly allowed and encouraged. 

2. Section 3.1.3:  
a. In the non-IID case, the use of the single-bit-assessment strategy within the 

multi-bit-assessment strategy (using the term ݊ ൈ  bitstring in the last paragraph ofܪ
this section) limits ܪI to about 85% of ݊, as a consequence of the fact that this is 
the median assessment for statistically idealized single-bit sources. The 
corresponding limitation for IID sources is 99% of ݊, but we rarely encounter 
noise sources that are IID. Further, it isn’t clear that a binary IID assessment of a 
sample from an IID multi-bit sample is appropriate, as IID multi-bit samples need 
not be bitwise IID. (This also occurs in Section 3.1.5.2. See comment #6.) 

b. This document does not specify how to represent the dataset as a bitstring of 
size ݊ܮ, so this procedure is not completely specified. How are the symbols to be 
arranged, and how is each symbol to be encoded? For example, if we just 
concatenate the symbols together from the first symbol to the last symbol, we still 
need to know how the symbols should be encoded: most significant bit to least 
significant bit, least significant bit to most significant bit, or some other encoding. 
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3. For the test in Section 3.1.4.3 (the restart sanity check), there is a test construction 
issue. If this test indicates a failure, then the lab/vendor is prohibited from crediting the 
noise source with any entropy production, which is (from the vendor’s perspective) a 
catastrophic result. As such, it is vital that this test behave correctly. Our testing 
indicates that this test fails much more commonly than anticipated (e.g., a theoretical 
failure rate of nearly 100% for wide data; see Section 3.2 of this comment document for 
details). The current test construction will lead to a significant proportion of correctly 
operating sources being erroneously disqualified. 

a. This test isn’t correctly constructed, because the value that is found isn’t 
necessarily the maximum count of the noise source’s most likely symbol. Instead, 
it is the maximum count of the column/row-specific most likely symbol, which 
may be the source’s most likely symbol, or it might be any of the other symbols. 
For example, in the binary case, if one wants to find ܲሺܺ ൌ ܺmaxሻ, then one 
should account for both the case where the noise source’s most common symbol 
occurred the most in the row/column, and also account for the probability that the 
most common symbol in a row/column is the noise source’s least common 
symbol. The underlying distribution for the existing test is really the maximum 
count of any symbol of a multinomial distribution; our testing indicates that the 
binomial distribution isn’t a good approximation of the actual underlying 
distribution. This suggests three possible approaches: 

i. Corrected Simulated Cutoff Restart Sanity Check: The tester establishes 
the appropriate cutoff through simulation, using the parameters for the 
noise source under evaluation. In our testing, the highest cutoff (the 
“worst case”) appears to occur when as many symbols as possible have 
the same probability as the most probable symbol, and then (if 
necessary) one final symbol so that the sum of the probabilities is 1 (all 
other symbols have probability 0). We found that performing 2,000,000 
rounds of simulation of the 1000-sample test (analogous to the per-
row/column test) provided stable results. 

ii. Corrected Exact Cutoff Restart Sanity Check: The tester establishes the 
appropriate cutoff through application of exact methods; Levin’s “A 
Representation for Multinomial Cumulative Distribution Functions” and 
Corrado’s “The exact distribution of the maximum, minimum, and the 
range of Multinomial / Dirichlet and Multivariate Hypergeometric 
frequencies” both contain (somewhat complicated) procedures for 
extracting exact cutoffs. Again, one would have to apply the “worst case” 
probabilities described above. 

iii. Corrected Binomial Restart Sanity Check: Change the test so that the 
binomial distribution is the correct underlying distribution. One way to do 
this would be to first find the most common symbol within the dataset, and 
then count the number of occurrences of that particular fixed symbol in 
each row/column. 

We characterize the original approach, and modified approaches (i) and (iii) in 
Section 3.2 of this comment document. Approach (ii) is expected to perform 
equivalently to approach (i). 

b. This test is also not correctly constructed, because the rows/columns are 
evidently not independent (any matrix entry which is the most likely symbol 
contributes to a row and a column count). It’s not clear how to fix this issue, but it 
appears that this doesn’t significantly impact the pass rate, so we think that it 
seems safe to ignore this theoretical problem. 
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c. This current test specification has some notational problems (this does not affect 
the results of the testing). The stated equation for the p-value,  

ܲሺܺ ൒ ܺmaxሻ ൌ෍ ൬
1000
݆ ൰ ௝ሺ1݌ െ ሻଵ଴଴଴ି௝݌

ଵ଴଴଴

௝ୀ௑max

 

is incorrect, as this is not the probability of this event. This fact is clearly 
acknowledged in the second paragraph of Section 3.1.4.3 by the use of the test 
statistic cutoff of 0.000005 for a targeted false reject rate of 0.01. The correct 
calculation (which should then be compared against the cutoff 0.01) can be put in 
terms of the appropriate Binomial Distribution CDF (BCDF) as follows1:  

ܲሺܺ ൒ ܺmaxሻ ൌ 1െ ቈ1 െ෍ ൬
1000
݆ ൰ ௝ሺ1െ݌ ሻଵ଴଴଴ି௝݌

ଵ଴଴଴

௝ୀ௑max

቉
ଶ଴଴଴

 

ൌ 1െ ൫ܨܦܥܤሺ1000, ௠௔௫ܺ,݌ െ 1ሻ൯
ଶ଴଴଴

 
d. For wide data (data with more than 256 symbols), it is not clear if the data tested 

for the restart tests is the mapped-down data (as required in Section 3.1.3) or the 
original wide data. The text of 3.1.4.1 seems to suggest that this should be 
unmapped data, but in 3.1.4.2, the entropy estimation tests are conducted, which 
generally presume that the data is at most 8 bits wide. 

 
4. In Section 3.1.5: 

a. The entropy source is conceptualized as having a single conditioning function, 
but it isn’t clear how entropy sources that process the raw noise through more 
than one conditioning stage should be handled. Should all conditioning stages be 
thought of as a single conditioning function, or is it acceptable to have multiple 
conditioning stages, where separate entropy assessments are generated for 
each step? In the latter case, must the output of each non-vetted conditioning 
function be separately statistically assessed (generating separate ݄’ for each 
stage)? 

b. The conditioning component is required to take a fixed number of inputs. For 
suitability of the analysis, it only seems important to produce a lower bound for 
the number of bits input into the conditioning component (and a corresponding 
lower bound for the entropy input). This requirement prevents important 
strategies that are both clearly reasonable and prevalent in industry, e.g., 
outputting from the conditioning component on a lazy basis (leaving the 
conditioning component to accumulate entropy until it is requested), or advanced 
entropy pool management that is designed to be resistant to degradation of the 
underlying noise source in the long term, e.g., Fortuna’s entropy pool structure. 
This requirement should be changed to require the vendor to specify a lower 
bound for the input to the conditioning function. 

5. In Section 3.1.5.1.2: 
a. The upper bound for the number of collisions used by Output_Entropy function 

(ܷ) only applies when ݊in ൒ ݊ ൌ minሺ݊out,݊ݓሻ (indeed, in the paper that this 
formula is based on2, this formula applies only in the case where ݊ ൅ logଶ ݊ ≪
	݊in). In the case where ݊in ൏  ݓ݊ we think that the text should indicate that ,ݓ݊

                                                      
1 This presumes that the test has been reformulated so that the underlying distribution is the Binomial 
Distribution. If one of the other approaches is taken, then the p‐value isn’t likely to be easy to calculate, and a 
comparison with a pre‐calculated cutoff is performed instead. 
2 It is also not clear what the meaning of ߙ is in this paper, so it’s not clear that the selection of ߙ ൌ 1 is 
appropriate. 
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should be set to ݊in so that the formula for ܷ makes sense. This action is 
consistent with the notion of ݊ݓ presented in Appendix E. 

b. Comment withdrawn. (Modeling suggests the proposal in this comment is overly 
conservative.) 

c. It doesn’t seem proper that the behavior of Output_Entropy varies with the data 
encoding of output of their noise source; in this formula, we think that ݊in should 
likely be replaced by the minimal number of bits required to encode the noise 
source output being passed into the conditioning function (ݓڿ logଶ  Below we .(ۀ݇
have the result (after applying the changes suggested in (a) above) of using 
something like CRC64 (so ݊out ൌ ݓ݊ ൌ 64ሻ, under the assumption that the 
vendor feeds in noise source outputs which are one of two symbols, with 1 bit of 
entropy each noise source output / conditioning input block, either encoded in 1-
bit input blocks, or in 64-bit input blocks. Fundamentally, it seems like the entropy 
produced should be the same in either case. This issue would naturally arise 
when using any conditioning function that can operate on blocks of arbitrary 
length. 

 
Figure 1 

d. In this section, SP800-90B claims that “vetted conditioning functions are 
permitted to claim full entropy”, but it isn’t clear how this claim could be justified; 
the formula (either before or after the changes we propose) doesn’t appear to 
yield exactly ݄out ൌ ݊out, and it’s not clear how close to ݄out ൌ ݊out you have to be 
in order to describe the entropy source as producing “full entropy”. (This could be 
resolved in SP800-90C, but this ambiguity immediately impacts the use of the 
SP800-90A CTR_DRBG without a derivation function, as this construction 
requires the seed to be full entropy.) 

e. Comment withdrawn. (This question is resolved in the last paragraph of 
3.1.5.1.2.) 
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f. In the instance where the conditioning function can be shown to be bijective, 
there should be some allowance to not apply this formula. (In this instance, ݄out ൌ
݄in) Common examples of such processing include encrypting the raw outputs, 
and certain styles of LFSR use. 

6. In the non-IID case, Section 3.1.5.2 effectively limits ݄out to about 85% of ݊out, as a 
consequence of the fact that this is the median assessment for statistically idealized 
single-bit sources. (This applies even in the multi-bit base, because one step is to 
assess the multi-bit symbols as if they were the output of a bit-oriented noise source.) 
The corresponding limitation for IID sources is 99% of ݊out, but we rarely encounter 
noise sources that are IID. Further, it isn’t clear that a binary IID assessment of a sample 
from an IID multi-bit sample is appropriate, as IID multi-bit samples need not be bitwise 
IID. (This also occurs in Section 3.1.3; see Comment #2 above.) 

7. In Section 3.1.6: 
a. It’s not clear what “multiple copies of the same physical noise source” are, 

exactly. For example, can we treat multiple ring oscillators with different nominal 
frequencies as such “multiple copies”? Specifically, how can vendors and labs 
distinguish between a “copy” of a noise source and an “additional noise source”? 

b. We are uncomfortable with the standard allowing the XOR of “multiple copies” of 
the “same” physical noise source as being considered a single noise source. In 
particular, in the provided example of the XOR of the output of multiple ring 
oscillators, if there are a large enough number of rings, this output is expected to 
look statistically excellent even if the rings are fully deterministic (see Figure 
2).This is a particular problem in this context, as the main assessment strategy 
here relies on just such a statistical assessment to establish the entropy. 
 

 

Figure 2 

c. The document states that an entropy source can only credit data from a single 
noise source (the primary noise source). All other noise sources cannot be 
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credited, and they can only be used (at all, without credit) if the conditioning 
function combining the noise source outputs is one of the vetted conditioning 
functions. This impacts operating systems particularly, as this section suggests 
that, for example, network interrupt timing and hard drive timing cannot both be 
credited. This means that OS-based entropy sources will have to designate a 
single primary noise source to credit and can only continue using the other 
sources if the conditioning is performed with a vetted conditioning function. (For 
example, this isn’t compatible with how Linux’s /dev/random LRNG is structured.) 
We don’t have a technical objection to this requirement (it is hard to characterize 
mutual entropy in such systems!), but it’s going to cause substantial headaches 
for our customers. 

8. Both Section 3.2.1 requirement #3 and Section 3.2.2 requirement #2 seem to suggest 
that all instances of the noise source must behave essentially the same way across all 
per-part and environmental conditions within its operational range. This isn’t true for any 
noise / entropy source that we’ve ever encountered; most of the physical sources have 
substantial part-to-part variation due to manufacturing variations, substantial 
temperature and voltage sensitivity, and some depend on the frequency of external 
clocks (e.g., to establish the sampling frequency). Most non-physical noise sources are 
dependent on the computer’s workload, etc. As such, the behavior of almost all noise 
sources is dependent on some set of entropy-relevant parameters. We suggest that 
these requirements be changed to require that the vendor produces a list of all such 
entropy-relevant parameters, require stable behavior of the entropy/noise source for 
fixed entropy-relevant parameters, and then separately require assessment across the 
expected range of entropy-relevant parameters (e.g., across a temperature / voltage / 
process characteristics envelope). The final assessed min entropy value would then be 
the smallest assessed value for any entropy-relevant parameter tested. In the absence 
of such a requirements change, almost no commercially produced noise / entropy 
sources would be capable of passing these requirements. 

9. For Section 4.4.1 (the Repetition Count Test), there is no upper bound for ܥ, which 
renders this health test ineffective at obtaining any particular security benefit. With the 
current requirements set, vendors can always claim that ߙ ൌ 0 (or arbitrarily close to this 
value), and then vacuously claim to have this test in place. We recommend that you 
apply the equivalent requirement imposed by Section 4.5 to this test; requirement (a) 

from Section 4.5 would impose an upper bound of ܥ ൑ ቒଵ଴଴
ு
ቓ. The following should be 

added to accomplish this: “ߙ shall be chosen so that ܥ ൑ ቒଵ଴଴
ு
ቓ.” 

10. For Section 4.4.2 (the Adaptive Proportion Test): 
a. The description of the cutoff value isn’t precise. It should say “Mathematically, C 

is the smallest integer that satisfies the following equation”, where the new text 
is bolded. 

b. Using Excel functions as the sole descriptor of how parameters are calculated 
seems inappropriate (though, we have no objection to including these for 
reference). Please describe the CRITBINOM function as the compositional 
inverse of the CDF for the relevant binomial distribution. 
 
The cutoff calculation isn’t correct (though it is close). By the construction of the 
test, the first symbol has already been produced, and thus must necessarily have 
been observed (i.e., there is no possibility of zero of these symbols being 
observed). The count of the number of these symbols can then be bounded 
using the binomial distribution, with ܹ െ 1 (not ܹ) trials. Thus, the formula in 
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footnote 10 should be ܥ ൌ 2൅ CRITBINOMሺܹ െ 1,power൫2, ሺെܪሻ൯, 1െ  ሻ. Thisߙ
has a series of small effects on Table 2 of SP800-90B, which should be as below 
(updated values are bolded). 
 

Table 1 

Binary Data 
W=1024 

Non-Binary Data 
W=512 

Entropy Cutoff  
Value C 

Entropy Cutoff  
Value C 

0.2 941 0.5 411 
0.4 841 1 311 
0.6 748 2 178 
0.8 664 4 63 
1.0 590 8 14 

 
c. There is no upper bound for ܥ, which renders these test requirements ineffective 

at obtaining any particular security benefit. With the current requirements set, 
vendors can always claim that ߙ ൌ 0 (or arbitrarily close to this value), and then 
vacuously claim to have this test in place. We recommend that you apply the 
equivalent requirement imposed by Section 4.5 to this test. Requirement (b) from 
Section 4.5 would impose an upper bound for ܥ for each entropy value. The 
following text should be added to accomplish this: “C shall be chosen so that, if 
the entropy source degrades so that it produces only half of the expected 
entropy, the probability of false accept for this test is less than 50% after 
examining 50,000 consecutive samples.” 
 

Such a bound for ܥ can be calculated as follows: there are ܶ ൌ ቔହ଴଴଴଴
ௐ

ቕ trials, and 

we need the eventual probability of non-detection to be less than 50%. Thus, if 
we call the probability of a single test not finding a failure under these conditions 
nd݌	nd, then we have the cutoff value݌

் ൏ 2ିଵ, so we need 
nd݌ ൏ 2ିଵ ்⁄ . 

The relevant calculation for this maximum cutoff is then based on the per-trial 
probability of not detecting this low entropy condition, in terms of the probabilities 
of the k distinct symbols in the degraded noise source, ݌௜. We denote the family 
of per-symbol binomial probabilities in terms of the binomial CDF function 
(BCDF) as ܿ௜ ൌ BCDFሺܹ െ ௜݌,1 ܥ, െ 2ሻ, whence 

nd݌ ൌ ෍ ௜ܿ௜݌
ଵஸ௜ஸ௞

. 

Let A be an index of a most likely symbol. We can produce trivial bounds for ݌nd 
by noting that ܿ௜ ൑ 1, so  

nd݌ ൑ ஺ܿ஺݌ ൅ ෍ ௜݌
ଵஸ௜ஸ௞
௜ஷ஺

ൌ 1 െ ஺ሺ1݌ െ ܿ஺ሻ. 

We seek a ܥ so that ݌nd ൑ 1െ ஺ሺ1݌ െ ܿ஺ሻ ൏ 2ିଵ ்⁄ , thus satisfying requirement (b) 
from Section 4.5. Simplifying, we are left with the inequality 

ܿ஺ ൏ 1 െ
1െ 2ିଵ ்⁄

஺݌
. 

This inequality is satisfied when 
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ܥ ൑ CRITBINOM൭ܹ െ 1, 2ି
ு
ଶ , 1 െ

1 െ 2ିଵ ்⁄

2ି
ு
ଶ

൱ ൅ 1. 

 
A corresponding table similar to SP800-90B’s Table 2 would then be as follows: 

 

Table 2 

Binary Data 
W=1024 

Non-Binary Data 
W=512 

Entropy Max 
Cutoff  
Value C 

Entropy Max Cutoff  
Value C 

0.2 972 0.5 450 
0.4 914 1 386 
0.6 858 2 281 
0.8 804 4 148 
1.0 754 8 40 

 
Note that choosing C to be greater than W makes this test impossible to fail and 
(in the absence of restrictions on C and alpha), this allows a vendor to vacuously 
claim to have implemented an APT test with ܥ ൐ ܹ even in the absence of any 
testing functionality. 
 

11. For Section 5.2.1 

a. In step #1, ݁௜,௝ should instead be ݁௜,௝ ൌ ௝݌	௜݌ ቔ
௅

ଶ
ቕ. (The existing statement neglects 

the floor operation). 
b. In step #2, the procedure isn’t completely specified. The document should 

indicate how symbols with equal ݁௜,௝ should be sorted so that the estimator is fully 
specified (otherwise, a range of outputs is possible, depending on how symbols 
with equal expected values are sorted). One possibility (which is what we 
implemented in our tool) is to sort the symbols primarily on the expected value, 
and secondarily (lexicographically) sort on the tuple value. 

12. For Section 5.2.2 
a. In step 1 of the first list in this section, ܿ௜ is calculated as a count of that symbol in 

all the data, including any data that is discarded in step 1 of the second list of this 
section. When ݁௜ is calculated by dividing ܿ௜ by 10, the resulting expectation will 
be too high in the case where both ܮ is not divisible by 10 and that symbol was 
present in the discarded data. To correct this, either set ݁௜ ൌ ሺܿ௜ ⁄ܮ ሻܮہ 10⁄  or ۂ
create the ܿ௜ values by counting symbols in the first 10ܮہ 10⁄  elements of the ۂ
input data. 

b. In step 2 of the first list in this section, this again isn’t fully specified for the same 
reason as in comment #11b. (What sort is correct when the expected values are 
equal?) 

13. For Section 6.3.3, it’s regrettable that the multi-bit Markov estimator (which was present 
in the last draft) was removed. This estimator seemed to provide meaningful insight to a 
variety of systems and was reasonably well behaved so long as adequate data was 
provided. We think that it is desirable to include some estimator targeting entropy 
sources well-modeled by a Markov model, including those entropy sources producing 
non-binary raw data; such entropy sources are common. The 2016 Markov estimator 
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produces artificially low results for small data sets of wide data because it uses 
confidence interval bounds. One option is to use the 2016 Markov estimator, but without 
the per-probability confidence interval bound adjustment. The inclusion of this extra 
estimator for the non-binary case doesn't significantly impact the maximum assessment 
bound. (See Section 3.4 for details.) As an additional note, the Markov estimator is the 
sole estimator that does not generally produce results based on a calculated confidence 
interval, so in some sense the value produced by this estimator is not directly 
comparable to the results of all the other estimators. (Note: the lܲocal calculation for 
predictors similarly do not bound the assessed value using confidence intervals, but the 
procedure for lܲocal is tuned so that we expect lܲocal ൏	 gܲlobal for sources whose output is 
fairly consistent, so we don’t expect this to be an issue.) 

14. For Section 6.3.5 (the t-tuple estimate), what if there is no such t? The estimator is 
inconclusive in this instance, and the estimator specification should indicate what to do 
when this condition occurs. 

15. Comment withdrawn. In the MultiMMC Prediction Estimate, maxEntries is a per-length 
bound on the number of counters, not a global value across all word lengths (as is the 
case with the LZ78Y Prediction Estimate). In the MultiMMC Prediction Estimate, if a new 
postfix comes after a known prefix, the corresponding counter is not created when the 
number of counters is already maxEntries, whereas in the LZ78Y Prediction Estimate, 
encountering a known prefix always results in incrementing some value in the dictionary 
for the observed postfix (even after maxDictionarySize prefixes are encountered). These 
distinguish the two prediction estimates. 

16. For section 6.3.4, there is a typo in the function definition of ܩሺݖሻ. The Hagerty-Draper 
paper’s description [HD] of this sum (equation 4.35) makes it clear that the sum should 
be taken over all the symbols in the test group (that is, the symbols after those used to 
build the dictionary); the outer sum should have the same number of terms as the testing 
group, ۂܾ/ܮہ െ ݀. As such, the upper bound for this sum should be ۂܾ/ܮہ. 

17. For section 6.3.10 
a. Algorithm step 3.a.i.2, when initializing the prefix ൫ݏ௜ି௝ିଵ, … ,  ௜ିଶ൯, one shouldݏ

initialize all postfix values to 0, not just the current postfix (ݏ௜ିଵ), as if the same 
prefix reoccurs at a later index, say at ൫ݏ௜ᇲି௝ିଵ, … , ௜ᇲିଶ൯ݏ ൌ ൫ݏ௜ି௝ିଵ, … ,  ௜ିଶ൯, theݏ
test for this prefix will succeed (in step 3.a.i/3.a.ii), and the corresponding postfix 
entries will be incremented in step 3.a.ii, without ݏൣܦ௜ᇲି௝ିଵ, … ,  ௜ᇲିଵሿݏ௜ᇲିଶ൧ሾݏ
necessarily having been initialized. 

b. Algorithm step 4 uses C, but C is not defined earlier in the algorithm. Between 
steps 3c and 4, insert, “Let C be the number of ones in the array ‘correct.’” 

18. For section 5.1.11, this use of bzip2 isn’t well specified, as there are several parameters 
to BZLIB. In particular, the “blockSize” and “workFactor” parameters should be specified. 

19. For section 6.3.2, step 7 provides a formula for ܨሺ1 ⁄ݖ ሻ. We have restricted the Collision 
Estimate to binary inputs, so now there is no need to represent the ܨ function at this 
level of generality. When the upper incomplete gamma function’s first parameter is a 
positive integer, it can be represented as a polynomial scaled by some elements that 
cancel in our function (see https://dlmf.nist.gov/8.4#E8 for details). For the current test, 
this simplifies to ܨሺݖሻ ൌ ଷݖ2 ൅ ଶݖ2 ൅  This expression can be used to simplify the .ݖ
equation used in the binary search step, which yields ܺᇱതതത ൌ െ2݌ଶ ൅ ݌2 ൅ 2, which can 
then be solved using the quadratic formula. We only care about the value in the interval 

ቂଵ
ଶ
, 1ቃ, so the resulting solution is  
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	݌ ൌ 	
1
2
൅ඨ5

4
െ
ܺᇱതതത

2
. 

This highlights the range where an answer is possible; if ܺᇱതതത ൏ 2, then this value is out of 

the valid range for the mean; in this case the most reasonable result is ݌ ൌ 1. For ܺᇱതതത ൐
ହ

ଶ
, 

the resulting root is complex and ݌	 ൌ 	
ଵ

ଶ
 is the desired result. 

20. For section 6.4, an alternate method to reduce the number of symbols is to partition the 
output “symbol space” into ݉ contiguous intervals such that the number of observed 
symbols is roughly equal in each interval; label these intervals from 0 to ݉ െ 1. To 
translate, map each symbol to the interval label for the interval that contains the raw 
symbol. This approach identifies sets of untranslated symbols that are nearby each other 
and is particularly useful if large scale changes are more significant than the low level 
noise (e.g., a nice quantum source making large scale changes, as compared to low 
level electrical noise). This approach was discussed at the 2016 Random Bit Generation 
Workshop. 

21. For section 5.1, the specification for how to conduct permutation testing is inefficient for 
passing tests. If you track the number of instances where ܶ ൏ ௜ܶ as ܥ௜,ଶ, then you can 
stop permutation test ݅ early any time that both ܥ௜,଴ ൅ ௜,ଵܥ ൐ 5 and ܥ௜,ଵ ൅ ௜,ଶܥ ൐ 5. This 
leads to a major speedup for passing data, and it is easy to show that the final verdict is 
the same for both procedures. 

22. For the binary search in sections 6.3.2 and 6.3.4, one should distinguish between types 
of “not finding a solution.” Often, one can find an interval, within which the solution 
clearly exists, and for which various floating point issues prevents finding the sought 
value within this interval. In these instances, the sensible return value would be the 
upper bound for smallest interval found to contain the solution, as this yields a lower 
bound for the assessed entropy. If there is a genuine error (e.g., no interval containing 
the targeted value is found, the function’s monotonicity assumption fails, etc.), then the 
error handling described in these sections makes sense. For the binary search in 
sections 6.3.7, 6.3.8, 6.3.9, and 6.3.10, this same “bounding behavior” should be 
described for cases where equality is not found. 

23. For sections 3.1.5 and 3.2.3: Is a conditioning component permitted to retain state 
between invocations? The existing text seems to suggest that the conditioning 
component output is expected to be a fixed (possibly keyed) deterministic function of 
only the input raw data provided in that invocation of the conditioning component (thus 
disallowing persistent internal state), but this is not explicitly stated as a requirement. 
Chaining state forward so that the raw data input into the conditioning component 
influences all future output is a common design pattern. In some designs with a non-IID 
noise source, some ways of using this persistent state may catastrophically reduce the 
output entropy rate. For non-vetted conditioning components, section 3.2.3 requirement 
#5 already demands that the submitter demonstrate that the conditioning component 
“does not significantly reduce the entropy rate” and “does not act poorly when the noise 
source data is not independent”, which should address this concern in this setting. 
Please add a requirement to section 3.2.3 that clarifies if persistent state within a 
conditioning component is permitted, for example: 
 
“Conditioning components shall be a fixed deterministic function of only a key (if 
applicable), and the raw data input in that invocation of the conditioning component, and 
may not retain any other state between invocations.” 
 



 12/13/2019 
13 

or 
 
“Conditioning components may retain state between invocations; in this case, the 
submitter shall provide mathematical evidence that the conditioning component's use of 
this persistent state does not result in the conditioning component significantly reducing 
the entropy rate of the entropy source output. In this case, the submitter shall also 
provide a justification about why the conditioning component does not act poorly when 
the noise source data is not independent.”  

24. In Sections 6.3.7, 6.3.8, 6.3.9, and 6.3.10: 

a. The final prediction estimate is െ logଶmax ቀܲ’global, lܲocal,
ଵ

௞
ቁ. As local notation, call 

ܣ̿ ൌ max ቀܲ’global, lܲocal,
ଵ

௞
ቁ. Prior to conducting the binary search for lܲocal, we know 

that ̿ܣ ൒ തܤ ൌ max ቀܲ’global,
ଵ

௞
ቁ. Any time lܲocal ൑ തܤ , finding lܲocal doesn’t change the 

final prediction estimate. Denote 

ሻ݌ሺܮ ൌ
1െ ݔ݌

ሺݎ ൅ 1 െ ݍሻݔݎ
ൈ

1
ேାଵݔ

, 

and recall that lܲocal ൌ  ሻ is a decreasing function. Before݌ሺܮ ଵሺ0.99ሻ, andିܮ
performing the binary search, so long as ܤത ൏ 1, we can compare ܮሺܤതሻ with 0.99; 
if ܮሺܤതሻ ൐ 0.99, then lܲocal ∈ ሺܤത , 1ሻ, and finding lܲocal will change the final prediction 
estimate. On the other hand, if ܤത ൌ 1 or ܮሺܤതሻ ൑ 0.99, then lܲocal ∈ ሾ0,ܤതሿ, and 
finding lܲocal can’t change the final prediction result (so we need not perform the 
expensive binary search). In the instance where we do perform a binary search, 
it can be limited to the identified domain. 

b. The obtained root for the polynomial ݂ሺݔሻ ൌ 1 െ ݔ ൅  ௥ାଵ may not require 10ݔ௥݌ݍ
iterations to converge, and may also require more than 10 iterations to converge. 
It would be more reasonable to check for convergence to a fixed point and bound 
the maximum number of loops. Please note that this sequence is monotonic up, 

and bounded by 
ଵ

௣
, so convergence is expected. We have empirically seen 

convergence (in long doubles) take up to 30 rounds, so any explicit bound should 
be above this value. 

25. In Section 2.2.1, there is some ambiguity as to what should be allowed to be classified 
as “digitization”, and what must be classified as “conditioning”. Some types of post-
sampling processing are equivalent to a different sampling scheme (e.g., sample 
decimation by a constant factor is clearly equivalent to sampling the analog noise source 
less frequently), and so it seems totally appropriate to include this processing within the 
“digitization” stage, even though this processing may increase the min entropy per 
sample from the noise source. Other types of post-sampling processing (e.g., almost any 
cryptographic processing) may conceal noise source failures from the entropy source 
health tests and obscure the statistical properties of the underlying noise source 
(causing the 90B estimators to overestimate the source entropy rate); such processing 
should be required to be described as part of conditioning. 
 
The SP800-90B document does not provide a clear rule that would allow vendors, 
testing labs, and the CMVP to clearly distinguish between post-sampling processing that 
may be classified as part of “digitization” and post-sampling processing that must be 
classified as part of “conditioning”. 
 
The types of processing that are appropriate to include in the digitization stage will vary 
between noise sources, so it seems unlikely that this issue can be resolved by simply 
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providing a list of acceptable processes that may always be included within the 
digitization processes3. As such, we propose the following additional requirement: 
 
“The submitter shall justify why all post-sampling processing included within the 
digitization process does not conceal noise source failures from the health tests or 
obscure the statistical properties of the underlying noise source.” 

26. Section 4.3, requirement 8 states, “The submitter shall provide documentation of any 
known or suspected noise source failure modes (e.g., the noise source starts producing 
periodic outputs like 101…01), and shall include developer-defined continuous tests 
to detect those failures.” 
 
Section 4.4 starts with the statement, “This recommendation provides two approved 
health tests: the Repetition Count test, and the Adaptive Proportion test. If these two 
health tests are included among the continuous health tests of the entropy 
source, no other tests are required.”  
 
The bolded portions of these two statements appear to be contradictory in the instance 
where the RCT/APT do not detect the vendor-identified failure modes (such failure 
modes are likely in non-IID noise sources). The statement in Section 4.4 should be 
clarified to make it clear that there are some instances where additional health tests 
(beyond the specified RCT/APT) may be required. We propose the following 
replacement language for the identified statement in Section 4.4: 
 
“This recommendation provides two approved health tests: the Repetition Count test, 
and the Adaptive Proportion test. If these two health tests are included among the 
continuous health tests of the entropy source and these two health tests satisfy all the 
requirements of Section 4.3 (including detecting any submitter-identified failure modes), 
then no other tests are required.”  

27. The calculations outlined in SP800-90B Sections 4.4.1 and 4.4.2 (and the related 
calculations included within comments #9 and #10 above) are only valid in the case of 
an IID source; for non-IID sources, it isn’t possible to make similar parameter 
calculations that apply for all sources (e.g., footnote 9 on page 25 is surely false for any 
source with substantial serial correlation). For developer-defined health tests, it’s not 
clear what assumptions can be made when producing the arguments that the 
requirements in section 4.5 hold for developer-defined health tests (referenced in 
Section 4.3 requirement 1b). Can these arguments be made assuming that the 
underlying noise source is IID (as with the APT and RCT tests), or must these 
arguments be based on the underlying entropy source’s actual distribution? 

28. When stating the false positive rate (alpha) to satisfy the requirement in Section 4.3 
requirement #3, should this be the alpha used to generate the cutoffs for the APT/RCT, 
or should this be the actual false positive rate experienced by this health test when 
supplied with raw data from this particular noise source? In the instance where the noise 
source is not IID, there may be a substantial difference between these two rates. The 
“assumed IID false positive rate” would allow easy comparison of health tests to each 
other, but the “actual noise source false positive rate” is more meaningful within the 
deployed system. 
 

                                                      
3 In the 2016 draft SP800-90B, this style of allowance – there called “post-processing” – was explicitly 
proposed, and NIST ultimately rejected this allowance. 
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In particular, we anticipate a specific behavior from vendors which, though not prohibited 
by SP800-90B, may lead to inaccurate and confusing false-positive estimates. 

a. A vendor designs a health test based around their initial entropy estimate of 
 ଴. They use the formulas ofߙ assumed and a desired false-positive rate ofܪ
Sections 4.4.1 and 4.4.2 of SP800-90B to produce cutoff values, ܥ଴

ோ and ܥ଴
஺.  

b. An assessment on the entropy source is performed and the assessed entropy 
rate, ܪassessed, is much lower than ܪassumed. Instead of changing the cutoff 
values, the vendor supplies a new false-positive rate based on ܪassessed that 
results in the same (already calculated) cutoffs, ܥ଴

ோ and ܥ଴
஺. A substantial 

reduction from ܪassumed to ܪassessed would likely, in this circumstance, result in a 
reported (“assumed IID”) false-positive rate that is very close to 1. 

 
This could lead to two possible problems: 

1. If the source is IID, the very high false positive rate of the health testing will 
reduce the entropy rate and vendors should account for the effects of the health 
testing on the entropy rate. 

2. If the source is non-IID., this stated false-positive rate may be substantially 
different than the “actual noise source false positive rate”. 

29. Please provide some additional information about the sort of simulations that could be 
used to argue developer-supplied health tests satisfy the requirements specified in 
Section 4.5. Some options for the simulation include supplying the developer-specified 
health tests with: 

a. simulated errors intermixed with ideal IID data with the expected entropy rate, 
b.  the output data of simulated noise sources experiencing the anticipated failure 

modes, and / or  
c. the sampled raw data of an actual noise source that is forced into failure modes. 

How many simulation rounds are required? What level of statistical confidence is 
required? 

30. We don’t anticipate that any noise sources will be completely IID. Conceptually, IID 
designs are possible, but most commercial designs retain substantial sample-to-sample 
state, and are thus non-IID. Even in the instances where the design is IID, in almost all 
cases, implementation-specific emergent phenomena induce non-IID behavior in these 
sources. In almost all cases, the best that can be achieved is a noise source that 
(through selection of parameters) can be made to behave as if it were almost IID. In 
SP800-90B, the submitter must provide a rationale for the IID claim, but there is 
presently no specification of what constitutes close enough to IID (that is, there is no way 
to classify sources as almost IID, or IID for the purpose of SP800-90B). As such, any 
deviation from IID-behavior constitutes a failure to be IID, no matter how well controlled 
and small that failure is. The IID tests specified in SP800-90B Section 5 detect a variety 
of non-IID behavior, but several styles of evidently non-IID sources can pass this testing; 
simply passing the (SP800-90B Section 5) IID Tests testing shouldn’t be taken as the 
sole requirement, particularly in the case of sources whose design is not IID (see 
Section 5 of these comments for details). We suggest either: 

a. Removing the IID track; this would simplify the entire process, and would only 
directly impact a very small proportion of the commercial market, or 

b. Specifying explicit bounds that must be met to allow a submitter/tester to 
conclude that the noise source is almost IID (IID for the purpose of SP800-90B). 
For establishing independence, this could be accomplished by specifying a 
maximum amount of mutual information that can be tolerated between random 
variables. For establishing that distributions are identical, this could be 
accomplished by specifying a maximum amount of statistical distance that can be 
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tolerated between the random variables’ distributions. For both metrics, there are 
a variety of sensible measures of these concepts; Kullback–Leibler divergence 
can be used to address both of these, and Rényi divergence is another 
interesting option. 

31. In Section 3.2.2, requirement #7 states, “If additional noise source outputs to increase 
security are used, a document that describes the additional noise sources shall be 
included.” It is not clear what information should be present within this document. Do all 
of the other requirements that apply to the “noise source” (where the term is unqualified 
by either “primary” or “additional”) pertain only to the “primary” noise source, or should 
these be applied to all the “additional” noise sources as well? 

32. The confidence intervals established in the Most Common Value Estimator, the t-Tuple 
estimator, and the LRS estimator are not correct even for the case where the noise 
source is IID, though the underlying reason varies. 

a. For the MCV estimator, the confidence intervals are established under the 
assumption that the number of occurrences of the observed most probable 
symbol is distributed as per the binomial distribution (the CI estimate is made 
under a normal approximation of the binomial distribution). This assumption isn't 
reasonable, as the most probable symbol can never have fewer than ۀ݇/ܮڿ 
occurrences, so the entire low end of the presumed binomial distribution is not 
within the support of the actual distribution. If we a priori knew what the most 
likely symbol was, then we could use this estimate. In our empirical testing, we 
have found that the produced confidence intervals are too conservative for both 
IID and non-IID noise sources (that is, the produced intervals are much more 
than the desired 99% confidence, so the produced entropy estimates from these 
estimators are too low). 

b. For the LRS estimator, the result is based on a sort of average symbol probability 
of collisions of tuples of various length. The distribution for each tuple length is 
different, but the calculated confidence intervals that are established apply only 
to the specific distribution selected (this selection occurs implicitly by taking a 
maximum of the observed normalized per-symbol probabilities). In our empirical 
testing, we have found that the produced confidence intervals are insufficiently 
conservative (that is, the produced intervals are much less than the desired 99% 
confidence, so the produced entropy estimates from these estimators are higher 
than appropriate for a 99% confidence). 

c. For the t-Tuple estimator, the bound suffers from the issues described in both (a) 
and (b). Only the tuple occurring most frequently for each considered tuple length 
is tracked; this probability (and the resulting per-symbol probability) has a clear 
minimum (ܤ ൌ ඃܮ/݇௝ඇ  for a j-tuple) which is not present in the binomial 
distribution (as in the MCV estimator); if ܤ ≫ 0, this causes a significant skew for 
the distribution. Similarly, the final calculation is made using the maximum 
calculated per-symbol probability over a range of lengths, but each of these 
lengths have a different underlying distribution, so selecting the maximum one 
disregards the impact of choosing one of the other distributions in other 
circumstances. 

d. For all estimators (other than the MCV estimator mentioned above and the 
Markov estimator, which does not produce an assessment based on confidence 
intervals), we have found that the confidence intervals produced for non-IID noise 
sources to be insufficiently conservative (that is, the produced intervals are much 
less than the desired 99% confidence, so the produced entropy estimates from 
these estimators are too high). 
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33. In Section 6.3.1, there is a typo in the worked example. The last line should be 
– logଶሺ0.6895ሻ ൌ 	0.5363. 

 

3 Results with Uniform Data 
Here is a summary of the results of the testing that we’ve performed within our acceptance 
testing for the statistical tests described in the SP800-90B final document. 
 
For all these tests, we use data output from the Intel RDRAND instruction, which uses an AES-
128 CTR_DRBG (so it should be fairly statistically ideal, and any problems we see are likely due 
to test construction issues). 

3.1 Estimating Min Entropy 
When evaluating estimators, it is useful to establish a practical maximum assessment; our 
approach to this is to assess many 1-million sample data sets of ideal-looking uniform data. This 
doesn't tell us anything about the benefits of including that particular estimator, but it does tell us 
something of the "cost" of using it. 
 

3.1.1 Non-IID Overall Assessments 

The first set of graphs are histograms of the assessed entropy under the non-IID track for data 
of various bit lengths. Each of these assessments was done on data sets of 1,000,000 samples. 
 
For the binary case, we performed 1,000,000 distinct assessments (each using a distinct data 
set). For all the other cases, we performed 30,000 distinct assessments per data width (each 
using a distinct data set). Recall, also, that the binary-case involves more estimators, so the 
binary results have a somewhat different meaning than the other results. 
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Figure 3 

 
It would appear that this non-IID assessment process works reasonably well up to 8-bit 
symbols, and not very well for 16-bit symbols. (This last finding is clearer when reviewing the 
results of the individual estimators). 
 
Figure 5 shows the median of the assessment divided by the bit length. (Recall that the non-IID 
assessment for 1-bit symbols involves more estimators, so the results are not strictly 
comparable with the other values.) 
 
We can also supply per-estimator information if you desire, but the “top level” numbers seemed 
most interesting in this case. 
 

3.1.2 IID Overall Min Entropy Assessment 

The IID entropy assessment is limited to the result of the Most Common Value estimate. 
 
For the binary case, we performed 1,000,000 distinct assessments (each using a distinct data 
set). For all the other cases, we performed 30,000 distinct assessments per data width (each 
using a distinct data set).  
 
We provide the histograms for the IID assessment track below. 
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Figure 4 

 

In general, the median of the distribution of assessments is reasonably close to full entropy in 
each assessment, other than in the very-wide symbol case, where inadequate data makes the 
computer algebra system perform oddly. Figure 5 shows the median of the assessment divided 
by the bit length. 
 

3.1.3 Interpretation of Min Entropy Estimates 

The non-IID track involves more estimators than the IID track, and so can detect more types of 
defects in the data produced by the noise source. As a consequence of using more estimators, 
the overall assessment (which is the minimum of any particular estimator’s assessment) is 
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expected to decrease. As such, we expect there to be a reduction in the assessed entropy from 
the IID case to the non-IID case. 
 
Further, increasing the number of symbols present in the data (݇) while keeping the number of 
samples examined constant is expected to similarly decrease the assessment for most of the 
estimators. 
 
As such, the data presented in Figure 5 is consistent with the behavior of any similar 
assessment process. Both assessment tracks seem to perform as expected. 
 

 

Figure 5. Assessment Percentage (IID and Non-IID) 

 

An alternate presentation of the multi-bit IID assessments is in Figure 6; in Figure 6, the blue 
regions depict the observed range of assessments. 

5 10 15
Bi ts

85

90

95

100

Percentage
Assessed Median Percentage

Non IID

IID



 12/13/2019 
21 

 

Figure 6 

3.2 Restart Sanity Check 
We conducted each test under one of three entropy hypotheses:  

1. full entropy (the “FullEnt” series), which is the correct assumption for this data, 
2. the median IID assessment (the “IIDMedianEnt” series), reflecting what we’d expect for a 

near-ideal source under the IID assessment strategy, or 
3. the median non-IID assessment (the “MedianEnt” series), which is what we’d expect for 

a near-ideal source under the non-IID assessment strategy. 
 

For each variant of the restart sanity check that we examined, we conducted 100,000 restart 
sanity checks per data width / entropy assumption tuple. 
 

3.2.1 Original Restart Sanity Check 

As mentioned above, the stated probability equality (which is described as equivalent to the 
calculation of the p-value) is invalid, so we don’t expect the distribution of the p-values 
calculated in this way to be uniformly distributed. If this test were completely reasonable, we 
would expect the corrected p-values4 to be uniformly distributed in the interval [0,1], but this was 
not the result that we observed. None of these parameters produce the desired uniform 
distribution of p-values, which suggests that the underlying test construction is flawed. 
 
Having said that, the proportion of failures is still reasonable for some conditions, as seen in the 
following graph. 
 

                                                      
4 The p-values calculated using the formula provided in Section 3.1.4.3 can be corrected using the 

function ݌value ൌ 1െ ൫1 െ ܲሺܺ ൒ ܺmaxሻ൯
ଶ଴଴଴

. 
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Figure 7 

The most technically meaningful failure rate here is the “FullEnt” track, as that reflects the 
appropriate assumption for the tested data. This assumption also best shows the problems in 
this test construction. We anticipate somewhat better behavior in actual testing, as the end 
entropy assessments for the IID and non-IID tracks produce reduced entropy estimates. 
 
For at least the non-IID assessment strategy, these tests appear to be reasonable to apply on 
data up to 8 bits wide. The non-IID assessment strategy would be expected to commonly fail 
this test for larger multi-bit samples (1.2% failure rate for 1-bit data, 1.7% failure rate for 2-bit 
data, 6.5% failure rate for 4-bit data, 32.4% failure rate for 8 bit data, 25.1% failure rate for 16-bit 
data). 
 

3.2.2 Corrected Simulated Cutoff Restart Sanity Check 

For this evaluation, the original test was used (so each test produces a maximum of the count of 
the per-row/column most likely symbols), but with fixed cutoffs. The cutoffs used for this test 
were found through simulation of 2,000,000 rounds of single 1000-sample tests (equivalent to a 
single row or column test) with a targeted per-test ߙ ൌ 0.000005. The cutoffs used are described 
in the following table (along with the binomial / original cutoffs for reference): 
  

Expected Failure Rate

FullEnt

MedianEnt

IIDMedianEnt
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Table 3 

Min Entropy Series Simulated 
Cutoff 

Binomial / 
Original 
Cutoffs 

0.852803 MedianEnt 625 623 
0.995319 IIDMedianEnt 572 571 
1 FullEnt 572 570 
1.86565 MedianEnt 343 338 
1.9908 IIDMedianEnt 317 314 
2 FullEnt 318 312 
3.75695 MedianEnt 118 113 
3.97586 IIDMedianEnt 105 100 
4 FullEnt 104 99 
7.41556 MedianEnt 23 19 
7.87995 IIDMedianEnt 20 16 
8 FullEnt 19 15 
13.2812 MedianEnt 6 3 
14.3163 IIDMedianEnt 5 3 
16 FullEnt 4 3 

 
We see above that the simulated cutoffs consistently produce a slightly higher bound than the 
purely binomial case (these binomial bounds were incorrectly applied to the original version of 
this check, and are also applied to the corrected binomial check). 
 
The corrected simulated cutoff sanity checks display the expected rates with the same test 
construction as originally specified (but with updated cutoff values). 
 

  
Figure 8 
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3.2.3 Corrected Binomial Restart Sanity Check 

In the corrected binomial version of the Restart Sanity Check, the symbol that is most common 
for the full 1,000,000 sample data set is established, and then only this most common symbol is 
counted for each of the column / row counts. This removes the impact of the number of symbols 
on the test (we now expect a binomial distribution), but leaves the non-independence defect of 
the row / column count statistics. As a result, the distribution of the resulting p-values still isn’t 
particularly uniform looking, but the proportion of tests passing is well behaved for all symbol 
widths tested. 
 

  
Figure 9 

 

3.2.4 Comments on the Restart Sanity Check 

The original test specified is flawed, and will lead to a higher than desired failure rate for all 
data. Certain types of noise sources would fail at only slightly elevated rates, but due to the 
catastrophic result of a failure, it is vital to get this test “right”. 
 
The two correction proposals that we offer both resolve the main issues with the restart sanity 
check, but they accomplish these in different ways.  
 
The corrected simulated cutoff version attempts to find reasonable bounds on a per-evaluation 
basis. A variant of this would be to find the exact cutoff, under the “worst case” assumption of 
the symbol probabilities described above, also on a per-evaluation basis. This requires that the 
lab/test tool performs some modest simulation or statistical calculations prior to conducting the 
restart sanity check. 
 

5 10 15
Bits

0.002

0.004

0.006

0.008

0.010

0.012

Corrected Binomial Restart Sanity Check Failure Rate

Expected Failure Rate

FullEnt

MedianEnt

IIDMedianEnt



 12/13/2019 
25 

The corrected binomial sanity check is easier to model statistically, but the power of the 
resulting statistical testing seems reduced. 

3.3 Tests of the IID Assumption 
We tested the permutation test, chi-square tests, and length of the longest repeated substring 
tests independently. They all failed roughly as commonly as expected, and most appear to be 
reasonably constructed. 
 

3.3.1 Permutation Tests 

The construction of the permutation tests doesn’t allow for calculation of a p-value directly, but 
we can examine the percentile of the permutation test reference data result within the full 
permutation test result data set. This data reflects a shortcut procedure (described on github by 
the user “zipnemud” here), wherein each permutation test is short circuited once the number of 
values above and below the reference value is suitably high to guarantee a pass of the 
permutation tests).5 
 
These results reflect 5402 permutation tests on each data width. 
 
In this testing, the “Length of Directional Runs” test and “Length of Runs Based on Median” 
permutation tests, the resulting percentile distributions departed significantly from the expected 
uniform distribution for all data widths we tested. Below, we show some representative 
histograms (the others have the similar “spikey” style distributions). 
 

 

Figure 10 

Despite these irregularities, the permutation tests had failure rates that were near the expected 
rates. 
 
In the figure below, we show the observed permutation test failure rates for various symbol 
sizes, along with the expected failure rate for all the tests (under the hypothesis that each test is 
independent, and each test has a failure rate of 1/1000), and a marked “Elevated Failure Rate” 
(under the hypothesis that each test is independent, and each test has a failure rate of 2/1000). 
 

                                                      
5 We mention this, because this short-circuiting will have some result on the distribution of percentiles that 
we present here (but no impact on the proportion of permutation tests that pass!). 
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Figure 11 

3.3.2 Chi-Square Tests 

We conducted over 111,000 tests for each data width, and most of the new Chi-Square tests 
(both for Independence and Goodness-of-Fit) performed quite well. The exception was the Chi-
Square Independence test on wide data which, for datasets of 1,000,000 samples, simply didn’t 
have sufficient data to be well behaved. All the other tests performed quite well (the distribution 
of the p-values from these tests are fairly uniform!). The histogram for the one problematic test 
(performed on 10-bit-wide data samples) is shown below. 
 

 

Figure 12 

 
This suggests that for this data set size (1,000,000 sample data sets), the data should be on the 
order of 8 bits or less (surely less than 10 bits). 
 

3.3.3 Length of the Longest Repeated Substring Test 

 
The LRS test also produces p-values, so we can also assess the distribution of the resulting p-
values. 
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These results reflect over 154,000 LRS tests on each data width. 
 

 

 

 

Figure 13 

This distribution is clearly non-uniform, so something is a bit amiss, but the pass rates are 
reasonable for all the tested data widths. 
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Figure 14 

As these test failure probabilities are well below the expected test failure rate, this test seems to 
perform reasonably for all data lengths tested. 
 

3.4 Markov Estimator 
We had some minor technical comments on the Markov estimator present in the 2016 draft 
having to do with calculation of alpha and the base of the log used when calculating epsilon 
(see 2016 Draft SP800-90B Comments pages 61-62, comments 26 and 27).  
 
Inclusion of a fixed version of the prior wide Markov estimator into the multi-bit assessment 
wouldn't have much of an impact on the upper bound of the final entropy assessment, so long 
as the sample size was suitably large (where the meaning of "suitably large" would depend on 
the width of the raw data). 
 
For example, for noise sources that produce ideal looking raw data, the single-bit non-IID track 
already produces estimates near 0.85 bits of min entropy per bit for sample sizes of 1-million, 
and so all non-IID noise sources ultimately get limited to approximately this average per-bit rate 
due to the inclusion of ܪbitstring when calculating ܪூ. Even if a wide Markov estimator had an 

assessment upper bound somewhat lower than the existing multi-bit estimators (and thus led to 
a somewhat lower ܪoriginal upper bound), you'd just need sufficient samples so that the reduced 

bound doesn't impact the final assessment (ܪூ) bound. 
 
The cutoffs appear to be near the following for an average per-bit rate of 0.85: 
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Table 4. Samples Required for Corrected Markov Estimator Upper Bound ࡵࡴ ⁄࢈ ൎ ૙.ૡ૞ 

Bits (b) Samples (millions) 
5 1  
6 3 
7 16 
8 89 

 
The feature that drove the 2016 Markov estimates lower with small data sets of wide data was 
principally the use of the upper bounds of confidence intervals to populate the initial probabilities 
/ transition matrix. 
 
The current (2018 90B) Markov estimator is applied only to binary data, which is somewhat 
unfortunate. We see many entropy sources that are well modeled by Markov models 
("Markovian" entropy sources), and it is common for these to produce non-binary data. The 
inclusion of the 2018 90B Markov estimator within the assessment of ܪbitstring does not reliably 

capture the "Markovian" behavior for systems producing wide data. As such, it seems useful to 
include this style of estimator for all tested sample widths. 
 
The current (2018 90B) Markov estimator does not base the initial probabilities or the transition 
matrix entries on confidence interval bounds; one could make a similar concession to 
practicality for a wide variant of this estimator by starting with the 2016 draft Markov test and 
removing the confidence interval logic. This approach would retain much of the benefit of the 
original test (asymptotically accurately assessing the min entropy for "Markovian" entropy 
sources) and would be equivalent to the 2018 90B Markov assessment for the binary sample 
case.  
 
Using the upper bound of the calculated confidence interval (rather than the raw observed 
probability) is a more conservative approach and is the approach that we think ought to be 
used. Having said that, it's clear that the 2016 Markov estimator needs up to 100 times more 
data than 90B requires in order to produce results that aren't being hugely influenced by the 
size of the confidence intervals. Most of our assessments are based on many data sets of 100 
million samples, and most entropy sources that we encounter are able to support such raw data 
requests. Therefore, our preference is to simply require more data, or perhaps to suggest that 
larger data sets will provide more meaningful – and possibly substantially higher – assessments, 
and let the vendors balance production of large data sets with artificially low assessments. 
 
If it isn't feasible to require such large sets and isn't desirable that the tool returns artificially low 
assessments for allowed sample sizes, then it seems that it would be better to use the "de-
confidence-interval'd" 2016 Markov estimator, rather than simply not performing this style of 
assessment for wide data. This approach retains the ability to (at least asymptotically) 
reasonably assess "Markovian" entropy sources. 
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We ran a series of experiments where we took uniform 'b' bit data and performed the non-IID 
90B assessment process to calculate the initial entropy estimate (ܪூ, requiring the calculation of 
both ܪoriginal and ܪbitstring, where ܪbitstring was calculated using the full binary data set). This was 

conducted using both the current 2018 90B tests and an experimental set of estimators (mostly 
the 2018 90B set of estimators, but with a de-confidence-interval'd 2016 Markov estimator 
instead of the 2018 90B Markov estimator). For each set of estimators and symbol size (1-8 
bits), we ran 50k tests on independently-generated uniform data of that symbol size. 
 
The distribution of assessments produced by the 2018 90B estimators and the distribution of 
assessments produced by the experimental estimator set were very similar to each other for 
ideal uniform data. For narrower data (sample bit widths of 1-7 bits), the resulting assessment 
histograms for the two estimator sets were nearly identical. For the 8-bit symbol size, there was 
a difference in the assessment histograms, depicted in Figure 15.  
 

 

Figure 15. Assessment Distribution 

 
For the sample widths of 1-7 bits, the median assessments were the same between the two 
estimator sets, up to the thousandths place. For 8-bit symbols, the median assessment for the 
2018 90B estimator set was approximately 7.19896, and for the experimental set the median 
assessment was approximately 7.06835, so the experimental estimator set did tend to produce 
slightly lower assessments than the 2018 90B estimator set for this type of data. 
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Normalizing the assessment by the symbol bit size provides a reasonable insight into the impact 
of including the "de-confidence-interval'd" 2016 Markov estimator. This is presented in Figure 
16. 
 

 

Figure 16 

 
Many of these results are somewhat above the 0.85 bits of entropy per bit that we described 
above; this is due to the fact that we didn't truncate the binary dataset to 1-million samples when 
calculating ܪbitstring. As a consequence, for ܾ-bit samples the bitstring data sets consisted of ܾ-

million samples rather than 1-million samples, which resulted in somewhat higher ܪbitstring 

assessments. Both evaluating the full translated bitstring and truncating it to 1-million bits are 
allowed assessment approaches in SP800-90B. 
 

4 Modeled vs Statistically Assessed Min Entropy 
In this section, we simulate and model various styles of sources. The output of the simulated 
sources is statistically analyzed. This work is a larger-scale version of DJ Johnston’s 2017 work 
using NIST’s reference python implementation (which is based on the draft 2016 document). [J 
2017] 
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All results are with respect to the non-IID tests. For each parameter setting, the results depicted 
reflect 100 tests of 1 million samples each, and a single test of 100 million samples (the “large 
block assessment”). Blue regions show the range of assessments. Green regions reflect 
modeling range. 
 
For all of these tests, we construct the referenced source based on data that ultimately comes 
from the Intel RDRAND instruction, which uses an AES-128 CTR_DRBG (so it should be fairly 
statistically ideal). 
 

4.1 Simple Noise Sources 
We start by examining a simple biased bit source. As we vary the probability of producing a ‘0’ 
symbol, the resulting assessed entropy is depicted in Figure 17. 
 

 

Figure 17 

 

When we instead produce correlated / anti-correlated bits so that  

Pr൫ ௝ܺ ൌ ܽ| ௝ܺିଵ ൌ 	ܽ	൯ ൌ 	
ሺܿ ൅ 1ሻ

2
, 

we then find the results in Figure 18. 
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Figure 18 

If we take a Gaussian noise source sampled by an 8-bit ADC, we find a somewhat more 
complicated result, depicted in Figure 19. 

 

Figure 19 
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For each of the sources in this section, these are all actually either IID sources, or models 
where the dependency can be easily teased out by the 90B statistical tests. As such, we would 
be surprised if the tools overestimate the entropy in these cases. 
 
In general, the statistical assessments seem to be well behaved and generally track the actual 
min entropy in a pleasing way. 
 

4.2 Perturbed Simple Noise Sources 
In these cases, a simple noise source (which we saw is assessed reasonably well) is processed 
or combined with some additional signal. 
 
We first examine the assessments of a fixed Gaussian source that has some periodic signal 
added to the random process. We would expect to encounter this when the underlying noise 
source has electronic design or implementation problems (e.g., insufficient grounding, 
insufficient power source, etc.) The results of such perturbation is depicted in Figure 20. 

 

Figure 20 

 

If we take the output of a Gaussian source (of varying standard deviation), and process the data 
through a simple LFSR, we find the results in Figure 21. This is directly comparable to Figure 
19. 
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Figure 21 

 

The graphs in this section show us that the addition of small, wholly deterministic variations 
induce substantial overestimates of entropy. As such, it is vital to test only raw data, and to filter 
out any extraneous signals that are not due to the underlying unpredictable process. 
 
The analysis of the LFSR-conditioned data shows that any conditioning, even if conceptually 
simple, makes establishing a lower bound for the min entropy via statistical testing impossible. 
 

4.3 More Complicated Noise Sources 
In this section, we review a few practical systems that are associated with very commonly 
fielded noise sources. In these graphs, the green region depicts the range of modeled min 
entropy. 
 
We first examine noise sources that are reasonably well modeled using the SUMS (Step Update 
Metastable Source) model. This includes the noise source underlying the Intel RdSeed and 
RdRand source. We use the model as described by [HKM 2012]. 
 
Here, we fix the right step size to 0.1, and vary the left step size, which is consistent with the 
approach used by Johnston. [J 2017] 
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Figure 22 

 

We then examine the results of modeling and statistically assessing the output of a single ring 
oscillator, which is periodically sampled. Here, we simulate and model a ring oscillator whose 
nominal frequency is 1 GHz (with a fixed per-data-parameter period distributed normally about 1 
ns, with standard deviation of approximately 0.04% of this value), sampled at 1 MHz (these 
values allow for calculation of the per-sample-period accumulated jitter, based on the per-
oscillator-period jitter). Figure 23 shows the modeled and statistically assessed min entropy, as 
we vary jitter. The accumulated per-sample-period jitter is depicted, presented as a percentage 
of the ring oscillator period. For this figure, we assume that an attacker cannot predict any 
portion of this jitter.  
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Figure 23 

 

For both of these noise sources, the underlying models are now somewhat complicated, and 
can return a range of entropy values for each parameter. The statistical testing results generally 
lie within the expected modeled ranges, but the lower end of the modeled range is the value 
that ought to be used for entropy assessment; this is lower than the value produced by the 
SP800-90B tests, which suggests that with practical sources, the vendor’s assessment of the 
entropy (ܪsubmitter) is of vital importance. 
 

4.4 Practical Considerations for Non-Ideal Noise Sources 
If we try to account for variation that is present, but predictable (as in [BLMT 2011]), then we 
must try to tease out which parts of the variation are due to local Gaussian noise (and are thus 
un-guessable by any reasonable attacker) and which parts of the variation are due to switching 
noise, power noise, and any other noise that is fundamentally predicable by any attacker with a 
sufficiently detailed understanding of the particular noise source design and implementation. 
 
If we take the results of [BLMT 2011] and credit 30% of the standard deviation as being 
unpredictable (and assume that the attacker can guess the remaining component), then we 
have a more substantial problem. No statistical test on the output of such a design can 
distinguish between the predictable variation and unpredictable variation, so under this 
assumption set, it isn’t reasonable to rely on the results of statistical testing to establish a lower 
bound for min entropy production. This situation is depicted in Figure 24. 
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Figure 24 

 

Here we see that a particular statistical assessment corresponds to a range of possible jitter 
percentages, each having distinct min modeled min entropy rates. In this circumstance, if the 
jitter percentage and proportion of observed jitter attributable to local Gaussian noise can be 
determined, then the lower bound of the modeled region should be used as the vendor’s 
 .submitter estimateܪ
 
The relationship between overall jitter percentage and the median of the statistically assessed 
entropy (across many tests) is reasonably stable in simulated oscillators, so one could deduce a 
lower bound for the per-sample jitter percentage from the statistical testing results. Using this 
relationship (so long as one can estimate the percentage of observed jitter that is due to local 
Gaussian noise), one could also back into an ܪsubmitter estimate using a combination of the 
modeled and statistical results, as follows: 

1. Run statistical testing on a large sample of output from the ring oscillator, and use these 
results to establish a lower bound for the overall per-sample jitter percentage. 

2. Use the estimated lower bound for the overall per-sample jitter percentage, ߪ,  and the 
expected proportion of this jitter standard deviation due to local Gaussian noise, ݃, to 
estimate the per-sample jitter percentage that is due to local Gaussian noise, ݃ߪ, and 
then use this parameter within a ring oscillator model, ܪmodel_minሺ݃ߪሻ. This model 
produces a lower min entropy bound appropriate for use as ܪsubmitter. 

We depict an approach to arriving at min-entropy bounds in Figure 25; in this graph, the cyan 
region depicts the ideal modeled min entropy range, the red curve is the statistical assessment 
lower bound, the blue curve is the statistical assessment upper bound, and the green region 
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depicts the modeled min entropy range where only 30% of the observed jitter is local Gaussian 
jitter (and is thus unpredictable to an attacker). In this diagram, we depict the case where the 
statistical tests indicate a result of 0.7 bits of min entropy per bit.  
 
For the corrected model / statistical lower bound, we first follow this statistical result value 
horizontally until it intersects with the statistical assessment upper bound (they meet at a jitter 
value of approximately 22.4%), and then vertically down, to the reduced jitter modeled lower 
bound (approximately 0.0844 bits of min entropy). 
 
For the corrected model / statistical upper bound, we follow this statistical result value 
horizontally until it intersects with the statistical assessment lower bound (they meet at a jitter 
value of approximately 37.7%), and then vertically down, to the reduced jitter modeled lower 
bound (approximately 0.152 bits of min entropy). 
 

 

Figure 25 

4.5 Overall Observations 
The statistical testing results for a particular source form a distribution; for more complicated 
sources, this distribution tends to be wider. Single results aren’t very meaningful, as they don’t 
provide insight into the underlying statistical result distribution. 
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The underlying source of uncertainty needs to be well understood and (to the degree possible) 
directly sampled. When the output of the noise source is influenced by processes that are 
predictable (for a sufficiently informed attacker), this influence should either be filtered out prior 
to statistical analysis, or some sort of model-based correction should be applied. If perturbed 
data is directly analyzed, the resulting min-entropy assessment is likely to be artificially high. 
 
The statistical tests seem to do a good job of assessing simple noise sources but have more 
trouble at providing a lower bound for more complicated noise sources. For complicated noise 
sources, the statistical testing results generally reflect values within the modeled min entropy 
envelope, but these statistical testing results often don’t conservatively estimate the noise 
source min entropy. This suggests that the assessment of non-trivial non-IID sources should be 
further reduced below the value produced through statistical assessment. 
 

5 IID Testing and Submitter IID Rationales 

5.1 The Issue 
Almost all commercially-available noise source designs are non-IID. If there was an explicit definition of 
what it meant to be almost IID (IID for the purpose of SP800-90B), then many types of designs could 
conceivably fall into this category. Some of these noise source designs use parameters in ranges that 
cause the noise source behavior to be arbitrarily close to IID. 
 
Even in the case where the underlying noise source design is conceptually IID, implementations of an IID 
noise source design generally have their IID property undermined by implementation-specific emergent 
phenomena, resulting in a noise source that is designed to be IID but is instead only close to IID. In this 
case, one can often set parameters so that the non-IID behavior is overwhelmed by the dominant IID 
behavior, again resulting in a noise source whose behavior can be made to be arbitrarily close to IID. 
 
There is presently no specification of what constitutes close enough to IID in SP800-90B, so it isn’t clear 
what style of argument is appropriate in a submitter rationale that the underlying noise source is IID. In 
the absence of any explicit IID tolerance criteria, any deviation from IID-behavior would seem to constitute 
a failure of the noise/entropy source to be IID. 
 

5.2 Examples of “Almost IID” 
It is sometimes possible to use a non-IID noise source design to build an IID noise source design. This is 
commonly accomplished by discarding data (e.g., a decimation filter), delaying sampling until some 
particular state occurs, bundling together distinct outputs into a single output, or resetting the noise 
source between samples. 
 
In some of these cases, the underlying design isn’t precisely IID, but can instead be made to be arbitrarily 
close to IID, and should (for some parameter selections) attain any reasonable almost IID definition. In 
these settings, the noise source has some asymptotic behavior, and data between samples is discarded 
until the underlying distribution is sufficiently close to the expected asymptotic distribution. 
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5.2.1 Well Behaved Markov Sources 
One example of this situation is a noise source based on some underlying system that is well-modeled 
using a finite time-homogeneous irreducible aperiodic Markov chain whose transition matrix rows are not 
equal. Such a source is not IID, as the difference between transition matrix rows signals a dependence 
between the current state and the next state. 
 
Due to the hypotheses, the k-step transition probability for this Markov chain converges to a steady state 
as ݇ goes to infinity, and the resulting steady state transition matrix consists of identical rows for each 
state. If one were to arrive at this steady state matrix after ܯ steps, then this design would be an IID 
source design, so long as ܯ steps were discarded between samples. In most instances, however, one 
never attains this limiting k-step transition matrix, but instead gets asymptotically close to it. For any 
desired closeness, one can attain this level of closeness for all sufficiently large values of ݇. 
 
This is the notion behind thinning, which is the process of discarding enough states (outputs) so that the 
probability row vectors for all states get close to the asymptotic behavior. 
 
In such systems, the straight-forward approach is to use thinning prior to every sample so that each 
state’s transition probabilities are almost the same as the asymptotic behavior (and thus the next state is 
almost independent of the current state). One could alternately use a somewhat more efficient approach, 
using thinning prior to taking multiple samples and combining these samples into one raw data sample. 
Both of these approaches could yield a source that is almost IID. 
 

5.2.2 Ring Oscillators 
Another example of this almost IID case is that of a periodically sampled free-running ring oscillator. Such 
a system has a substantial amount of internal state, namely the current phase of the ring with respect to 
the sample clock. These phase values can be thought of as residing on a unit circle, and the output is 
established by where on the circle the current phase is when the ring oscillator is sampled. Under this 
interpretation, the evolving ring-oscillator system is effectively performing a random walk on the phase 
unit circle. 
 
With most parameter sets, there is substantial autocorrelation between adjacent outputs from such a 
noise source; this autocorrelation prevents the data from being independent (and in the ideal case is the 
reason that the ring oscillator doesn’t produce full-entropy data). 
 
By consulting Figure 25, one can see that the modeled min entropy appears to asymptotically approach 
full entropy (1 bit per output bit). We can immediately note that if the output is full entropy, then it must 
also be IID, so in some sense as the jitter percentage increases, the underlying noise source must grow 
closer to IID. It follows that for any reasonable definition of the term, it must eventually become almost IID. 
Conceptually, this occurrence can be justified by noting that as you let the ring oscillator accumulate 
uncertainty between samples (with an increased jitter percentage), the initial condition becomes less 
important, and the output distribution for the next output sample grows closer to the limiting distribution. 
 
There isn’t currently a specified bound to allow for an almost IID claim in SP800-90B, but for such 
designs, we can establish what parameters are likely to produce data that will pass the SP800-90B IID 
(SP800-90B Section 5) testing. 
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To establish this, we simulated an ideal ring oscillator with various jitter parameters and generated 100 1-
million sample sets for each parameter setting. We then performed the IID testing specified in SP800-90B 
Section 5 on each set. The results of this testing are depicted in Figure 26; in this diagram, the cyan 
region is the modeled entropy range (technically using a separate “min entropy” y-axis); the brown line 
indicates the rate of the IIG subtests pass; and the blue line indicates the rate that the overall IID testing 
passes. 
 

 

Figure 26 

 
Here we see the IID subtest pass rate generally increase as expected as the jitter percentage is 
increased. We also see a somewhat surprisingly rapid step for the pass rate for full IID testing; this is due 
to the fact that all the subtests must pass for the overall test to be considered a “pass,” combined with the 
fact that a few of the included subtests were particularly sensitive to the style of defect produced by this 
type of source. We have annotated this figure to indicate the late-passing tests and where the rate at 
which all the tests pass becomes sufficiently high to support the hypothesis that the data is IID after 100 
samples of testing; for this example, this occurred when the jitter percentage was greater than 64%.6 
 
The sort of ring oscillator designs that we commonly encounter typically have a jitter percentage between 
0.01% and 5%; a 64% jitter percentage is exceptionally high. 
 

                                                      
6 Using a one-sided binomial test (n=100, p=999/1000), the 1% p-value cutoff is 99 of the 100 tests 
passing; after the jitter percentage was greater than 64%, all subtests passed at least at this rate. 



 12/13/2019 
43 

In addition, this specified cutoff is only valid for ideal ring oscillators. The actual cutoff necessary for any 
particular design depends on the proportion of the observed jitter due to local Gaussian noise. 
 
One reason that such designs are not common is that they are not remotely efficient. For example, if the 
underlying design was a 1GHz ring oscillator, sampled at 1MHz and with a per-sample 5% jitter 
percentage, 30% of which is due to local Gaussian noise, then we could use this design in a couple of 
notable ways. 
 
Option 1: Non-IID Source 

 Each time the ring is sampled, output this sample. 
 Each sample output contains more than 0.0175851 bits of entropy, produced at 1 million samples 

per second. 
 It would then take approximately 22 ms to seed a DRBG to a security strength of 256. 

 
Option 2: A possible almost IID Source 

 Discard a substantial number of samples between outputs by using a decimation filter. For these 
parameters, we need to decimate at a rate of 1:1821. 

 Each sample contains more than 0.977408 bits of entropy, produced at about 549 samples per 
second. 

 It would then take approximately 716 ms to seed a DRBG to a 256-bit security strength. 
 
As seen from the above example, it is generally much more efficient (with respect to time needed to 
accumulate entropy) to use such designs as non-IID noise sources. 
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